Multiple analogical proportions

Henri Prade Gilles Richard

IRIT, CNRS and Toulouse University, France

based on a paper to appear in AI Communications

Contents

- Short background on analogical proportions
- Analogical proportions in an old treatise
- Multiple analogical proportions

Analogical proportions

- " a is to b as c is to d"
a differs from b as c differs from d and b differs from a as d differs from $c "$.
- $a: b:: c: d \triangleq$ $((a \wedge \neg b) \equiv(c \wedge \neg d)) \wedge((\neg a \wedge b) \equiv(\neg c \wedge d))$ it uses dissimilarity indicators only
- $a: b:: c: d$ satisfies the key properties of an analogical proportion, namely
- reflexivity: $a: b: a: b$
- symmetry: $a: b:: c: d \Rightarrow c: d:: a: b$
- central permutation: $a: b:: c: d \Rightarrow a: c:: b: d$
- also satisfies $a: a:: b: b$ and external permutation $a: b:: c: d \Rightarrow d: b:: c: a$

Analogical proportion truth table Boolean patterns making analogical proportion $a: b:: c: d$ true

a	b	c	d
0	0	0	0
1	1	1	1
0	0	1	1
1	1	0	0
0	1	0	1
1	0	1	0

- analogical proportion is transitive:
$(a: b:: c: d) \wedge(c: d:: e: f) \Rightarrow a: b:: e: f$
- multiple-valued logic extensions

Arithmetic and geometric proportions

Numerical proportions:

- Arithmetic proportion: $a-b=c-d$
- compatible with $a: b:: c: d$ but $a-b \in\{-1,0,1\}$
- Geometric proportion: $\frac{a}{b}=\frac{c}{d}$
- These two basic proportions can be exchanged by logarithmic / exponential transformations: if $\frac{a}{b}=\frac{c}{d}$ then we have $\ln (a)-\ln (b)=\ln (c)-\ln (d)$ if $a-b=c-d$ then we have $\frac{\mathrm{e}^{a}}{\mathrm{e}^{b}}=\frac{\mathrm{e}^{c}}{\mathrm{e}^{d}}$.

Analogical proportions between vectors

- Items are represented by vectors of Boolean values $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$
- $\vec{a}: \vec{b}:: \vec{c}: \vec{d}$ iff $\forall i \in[1, n], a_{i}: b_{i}:: c_{i}: d_{i}$
- Pairing pairs (a, b) and (c, d)

$\mathcal{A}_{1} \ldots \mathcal{A}_{i-1} \mathcal{A}_{i} \ldots \mathcal{A}_{j-1} \mathcal{A}_{j} \ldots \mathcal{A}_{k-1} \mathcal{A}_{k} \ldots \mathcal{A}_{r-1} \mathcal{A}_{r} \ldots \mathcal{A}_{s-1} \mathcal{A}_{s} \ldots \mathcal{A}_{n}$																		
$a 1$..			0	...	0	1	...	1	0	...	0	1		1	0		0
b				0		0	1	...	1	0		0	0		0	1		1
c 1				0		0	0		0	1	...	1	1		1		..	0
$\bar{d} 1$				0		0	0		0	1		1	0		0			

On attributes \mathcal{A}_{1} to $\mathcal{A}_{r-1} \vec{a}$ and \vec{b} agree and \vec{c} and \vec{d} agree as well. It contrasts with attributes \mathcal{A}_{r} to \mathcal{A}_{n}, for which we can see that \vec{a} differs from \vec{b} as \vec{c} differs from \vec{d} (and vice-versa)

Analogical proportions: A machinery for comparing items

- Analogical proportions for Boolean vectors
(it extends to nominal values)
$\vec{a}: \vec{b}:: \vec{c}: \vec{d}$ holds if and only if
$\mathcal{A}_{\vec{a}, \vec{b}}^{=}=\mathcal{A}_{\vec{c}, \vec{d}}^{=}, \mathcal{D}_{\vec{a}, \vec{b}}^{01}=\mathcal{D}_{\vec{c}, \vec{d}}^{01}$ and $\mathcal{D}_{\vec{a}, \vec{b}}^{10}=\mathcal{D}_{\vec{c}, \vec{d}}^{10}$ where
$\mathcal{A}_{\vec{a}, \vec{b}}^{=}=\left\{i \mid a_{i}=b_{i}\right\}$
$\mathcal{D}_{\vec{a}, \vec{b}}^{01}=\left\{i \mid a_{i}=0, b_{i}=1\right\}$ and
$\mathcal{D}_{\vec{a}, \vec{b}}^{10}=\left\{i \mid a_{i}=1, b_{i}=0\right\}$
- \vec{d} can be computed from \vec{a}, \vec{b} and \vec{c}
- the 4 vectors are in general all different

Pairing pairs (a, d) and (b, c)

- $\vec{a}: \vec{d}:: \vec{b}: \vec{c}$ does not hold: see attributes \mathcal{A}_{s} to \mathcal{A}_{n}

$a: b:: c: d=((a \wedge d) \equiv(b \wedge c)) \wedge((\neg a \wedge \neg d) \equiv(\neg b \wedge \neg c))$
or equivalently
$a: b:: c: d=((a \wedge d) \equiv(b \wedge c)) \wedge((a \vee d) \equiv(b \vee c))$
a matter of similarity

Analogical inference

- Equation $a: b:: c: x$ may not have a solution in \mathbb{B} neither $0: 1:: 1: x$ nor $1: 0:: 0: x$ have a solution
- when it exists (iff $(a \equiv b) \vee(a \equiv c)$ holds) it is unique
- $x=c \equiv(a \equiv b)$
- Applies to Boolean vectors: look for $\vec{x}=\left(x_{1}, \cdots, x_{n}\right)$ s.t. $\vec{a}: \vec{b}:: \vec{c}: \vec{x}$ holds:
$\Rightarrow n$ equations $a_{i}: b_{i}:: c_{i}: x_{i}$
analogical proportion solving process is creative $\vec{x} \neq \vec{a}, \vec{x} \neq \vec{b}, \vec{x} \neq \vec{c}$

Puazles

Th. Evans (1963)
Example encoded with 5 Boolean predicates hasRectangle($h R$), hasBlackDot (hBD), hasTriangle($h T$) hasCircle($h C$), hasEllipse($h E$) (in that order)

	$h R$	$h B D$	$h T$	$h C$	$h E$
\boldsymbol{a}	1	1	0	0	1
\boldsymbol{b}	1	1	0	1	0
\boldsymbol{c}	0	1	1	0	1
\boldsymbol{x}	$?$	$?$	$?$	$?$	$?$

General analogical inference

-

$$
\frac{\forall i \in\{1, \ldots, p\}, \quad a_{i}: b_{i}:: c_{i}: d_{i} \text { holds }}{\forall j \in\{p+1, \ldots, n\}, \quad a_{j}: b_{j}:: c_{j}: d_{j} \text { holds }}
$$

(Stroppa, Yvon, 2005)

- analogical reasoning amounts to finding completely informed triples ($\vec{a}, \vec{b}, \vec{c}$) suitable for inferring the missing value(s)
of an incompletely informed item (\vec{d})
- if several triples leading to distinct conclusions
a voting procedure may be used
- extends to gradual analogical proportions

Classification

M. Bounhas, H. Prade, G. Richard. Analogy-based classifiers for nominal or numerical data. IJAR 91, 36-55, 2017

- direct application of general inference principle
- one has to predict a class $c l(\vec{x})$ (viewed as a nominal attribute) for a new item \vec{x}
- successively applied to

Boolean, nominal and numerical attributes

- analogical classifiers always give exact predictions when the classification process is governed by an affine Boolean function (which includes x-or functions) and only in this case
does not prevent to get good results in other cases (as observed in practice)

Difference with case-based reasoning

Analogical proportion-based inference $\neq \mathrm{CBR}$:

It takes advantage of triples for extrapolating conclusions,
while Case-Based Reasoning exploits the similarity of the new case
with stored cases considered one by one

An old treatise

- Gaspard Monge. Traité Élémentaire de Statique, à l'usage des Écoles de la Marine (8 éd. de 1788 à 1846)

An old treatise

- Gaspard Monge. Traité Élémentaire de Statique, à l'usage des Écoles de la Marine (8 éd. de 1788 à 1846)
- THEOREM. Fig. 14. If three forces P, Q, R, be represented in intensity and direction by the three sides $A B, A C, A D$, adjacent to the same angle of a parallelopipedon $A B F E G D$, so that

$$
P: Q: R:: A B: A C: A D
$$

their resultant S will be represented in intensity and direction by the diagonal $A E$ of the parallelopipedon adjacent to the same angle, and we shall have

$$
P: Q: R: S:: A B: A C: A D: A S
$$

Figure: Fig. 14 in Gaspard Monge's book

A vectorial view of Boolean analogical proportions- $\frac{1}{d}$

 Four items a, b, c, d represented by Boolean vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ on a set of n features form an analogical proportion componentwise if and only if abdc is a parallelogram in \mathbb{R}^{n}The man: king :: woman : queen example

	sexM	sexF	power position	ordinary position	human	god
Man (\vec{M})	1	0	0	1	1	0
King (\vec{K})	1	0	1	0	1	0
Woman (\vec{W})	0	1	0	1	1	0
Queen (\vec{Q})	0	1	1	0	1	0

$$
\overrightarrow{M K}=\vec{K}-\vec{M}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right)-\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1 \\
0 \\
0
\end{array}\right)=\overrightarrow{W Q}=\vec{Q}-\vec{W}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
1 \\
0
\end{array}\right)-\left(\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1 \\
0
\end{array}\right)
$$

A vectorial view of Boolean analogical proportions - 2

- If four Boolean vectors make an analogical
proportion $\vec{a}: \vec{b}:: \vec{c}: \vec{d}$ then $\vec{d}=\vec{a}+\overrightarrow{a b}+\overrightarrow{a c}$

$$
\vec{Q}=\vec{M}+\overrightarrow{M Q}=\vec{M}+\overrightarrow{M K}+\overrightarrow{M W}
$$

- Conversely, $\vec{d}=\vec{a}+\overrightarrow{a b}+\overrightarrow{a c}$ can be rewritten as $\vec{d}-\vec{a}=\overrightarrow{a d}=\overrightarrow{a b}+\overrightarrow{a c}$. So $a b d c$ is a parallelogram Then $\vec{a}: \vec{b}:: \vec{c}: \vec{d}$ holds true, provided that $\ddagger i$ such that $a_{i}=0$ and $b_{i}=c_{i}=1$, or such that $a_{i}=1$ and $b_{i}=c_{i}=0$, in order to guarantee the existence of a Boolean solution \vec{d}

Multiple analogical proportions

- in Gaspard Monge 's book $x_{1}: x_{2}: \cdots: x_{n}:: y_{1}: y_{2}: \cdots: y_{n}$, is to be understood as $\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}=\cdots=\frac{x_{n}}{y_{n}}$,
- from $a: b: c:: x: y: z$ Monge draws the numerical equalities $b=\frac{a y}{x}$ and $c=\frac{a z}{x}$. From which, one can easily conclude $\frac{b}{c}=\frac{y}{z}$ (by eliminating $\frac{a}{x}$)
- Counterpart for Boolean analogical proportions?
- See $a: b: c:: x: y: z$ as the conjunction of $a: b:: x: y$ and $a: c:: x: z$
- by applying central permutation, symmetry and transitivity b:c:: y:z follows

Boolean valuations and postulates

000111
111000
000000
001001
010010
011011
100100 101101
110110
111111
Table: Valid valuations for $a: b: c:: x: y: z$
2 postulates $a: a: a:: x: x: x$ and $a: b: c:: a: b: c$ symmetry still holds

Prade / Richard (IRIT)

Inference and triangulation: Analogy solving problem

Figure: Triangulation example
Since the proportion King:Man: :Queen:Woman holds, the two solutions x should be the same

Triple analogical proportion

- In the numerical case, $a: b: c: d:: x: y: z: t$ is understood as $b=\frac{a y}{x}, c=\frac{a z}{x}$ and $d=\frac{a t}{x}$
- in the Boolean setting $a: b: c: d:: x: y: z: t$ can be defined by the conjunction of 3 proportions: $a: b:: x: y, a: c:: x: z$ and $a: d:: x: t$ from which one can derive 3 other proportions b:c::y:z,b:d::y:t, and $c: d:: z: t$, using transitivity

Triple analogical proportion

- In the numerical case, $a: b: c: d:: x: y: z: t$ is understood as $b=\frac{a y}{x}, c=\frac{a z}{x}$ and $d=\frac{a t}{x}$
- in the Boolean setting $a: b: c: d:: x: y: z: t$ can be defined by the conjunction of 3 proportions: $a: b:: x: y, a: c:: x: z$ and $a: d:: x: t$ from which one can derive 3 other proportions b:c::y:z,b:d::y:t, and $c: d:: z: t$, using transitivity
- stating that $a_{1}: a_{2}: \cdots: a_{n}:: x_{1}: x_{2}: \cdots: x_{n}$ holds, establishes a parallel between two situations, one described by the a_{i} 's, the other described by the x_{i} 's, with a one to one correspondence

Example - 1

 dog:pig:wolf:wild boar ::puppv:pialet:wolf cub:vouna wild boar

Figure: Animals and their offsprings.

Example - 2

dog:pig:piglet:puppy ::
wolf:wild boar:vouna wild boar:wolf cub

Figure: Domestic animals and corresponding wild animals. dog:puppy:wolf:wolf cub::
pig:piglet:wild boar:young wild boar

Analogical proportions are easy to obtain

- by taking pairs of mutually exclusive Boolean properties
$\left(p \wedge p^{\prime}=\perp, q \wedge q^{\prime}=\perp, r \wedge r^{\prime}=\perp\right)$,
and considering four items $a, a^{\prime}, b, b^{\prime}$ respectively described on the 6 properties $\left(p, q, r, r^{\prime}, q^{\prime}, p^{\prime}\right)$ by

	p	q	r	r^{\prime}	q^{\prime}	p^{\prime}
a	1	1	1	0	0	0
a^{\prime}	1	1	0	1	0	0
b	1	0	1	0	1	0
b^{\prime}	1	0	0	1	1	0

Analogical proportions are easy to obtain

- by taking pairs of mutually exclusive Boolean properties $\left(p \wedge p^{\prime}=\perp, q \wedge q^{\prime}=\perp, r \wedge r^{\prime}=\perp\right)$, and considering four items $a, a^{\prime}, b, b^{\prime}$ respectively described on the 6 properties $\left(p, q, r, r^{\prime}, q^{\prime}, p^{\prime}\right)$ by

	p	q	r	r^{\prime}	q^{\prime}	p^{\prime}
a	1	1	1	0	0	0
a^{\prime}	1	1	0	1	0	0
b	1	0	1	0	1	0
b^{\prime}	1	0	0	1	1	0

$a: a^{\prime}:: b: b^{\prime}$ and $a, a^{\prime}, b, b^{\prime}$ make a kind of square of opposition (not the traditional one!)

An equivalent binary (classification) tree

Introducing one more level in the tree

From the square to the cube

Table 1	p (animal)	p (canid)	q (tame)	r (young)	r^{\prime} (adult)	q^{\prime} (wild)	p^{\prime} (suidae)	o^{\prime} (plant)
a puppy	1	1	1	1	0	0	0	0
\mathbf{a}^{\prime} dog	1	1	1	0	1	0	0	0
b wolfcub	1	1	0	1	0	1	0	0
\mathbf{b}^{\prime} wolf	1	1	0	0	1	1	0	0
c piglet	1	0	1	1	0	0	1	0
c $^{\prime}$ pig	1	0	1	0	1	0	1	0
d yg.wd.bo.	1	0	0	1	0	1	1	0
\mathbf{d}^{\prime} wildboar	1	0	0	0	1	1	1	0

Analogical cube

Parallel facets, parallel edges are in opposition

Clearly we can then generate hypercubes by introducing more dichotomies

Concluding remarks

- Analogical proportions do not come in isolation
- use of analogy-based explanations in machine learning
- interfacing symbolic (high level features) and numerical (embeddings) representations

