Multiple analogical proportions

Henri Prade Gilles Richard

IRIT, CNRS and Toulouse University, France

based on a paper to appear in AI Communications

Prade / Richard (IRIT)

Multiple analogical proportions

GT App. & Rais. 13 Déc. 2021 1

Contents

- Short background on analogical proportions
- Analogical proportions in an old treatise
- Multiple analogical proportions

Analogical proportions

• " a is to b as c is to d" a differs from b as c differs from d and *b* differs from *a* as *d* differs from *c*". • $a \cdot b \cdot c \cdot d \triangleq$ $((a \land \neg b) \equiv (c \land \neg d)) \land ((\neg a \land b) \equiv (\neg c \land d))$ it uses dissimilarity indicators only • a : b :: c : d satisfies the key properties of an analogical proportion, namely • reflexivity: a : b : a : b • symmetry: $a:b::c:d \Rightarrow c:d::a:b$ • central permutation: $a:b::c:d \Rightarrow a:c::b:d$ also satisfies a · a · b · b and external permutation $a : b :: c : d \Rightarrow d : b :: c : a$ A B F A B F

Prade / Richard (IRIT)

Analogical proportion truth table Boolean patterns making analogical proportion *a* : *b* :: *c* : *d* true

- analogical proportion is transitive:

 $(a:b::c:d) \land (c:d::e:f) \Rightarrow a:b::e:f$

- multiple-valued logic extensions

Prade / Richard (IRIT)

Arithmetic and geometric proportions

Numerical proportions:

- Arithmetic proportion: a b = c d
- *compatible* with *a* : *b* :: *c* : *d* but *a* − *b* ∈ {−1, 0, 1}

- Geometric proportion: $\frac{a}{b} = \frac{c}{d}$
- These two basic proportions can be exchanged by logarithmic / exponential transformations:
 - if $\frac{a}{b} = \frac{c}{d}$ then we have $\ln(a) \ln(b) = \ln(c) \ln(d)$
 - if a b = c d then we have $\frac{e^a}{e^b} = \frac{e^c}{e^d}$.

Analogical proportions between vectors

Items are represented by *vectors* of Boolean values *a*=(*a*₁,..., *a_n*) *a*: *b*:: *c*: *d* iff ∀*i* ∈ [1, *n*], *a_i*: *b_i*:: *c_i*: *d_i*Pairing pairs (*a*, *b*) and (*c*, *d*)

	\mathcal{A}_1	 \mathcal{A}_{i-1}	\mathcal{A}_i	•••	\mathcal{A}_{j-1}	\mathcal{A}_{j}	•••	\mathcal{A}_{k-1}	\mathcal{A}_k	 \mathcal{A}_{r-1}	\mathcal{A}_r	\mathcal{A}_{s-1}	$\mathcal{A}_s \dots \mathcal{A}_n$
a	1	 1	0		0	1		1	0	 0	1	1	0 0
b	1	 1	0		0	1		1	0	 0	0	0	1 1
\bar{c}	1	 1	0		0	0		0	1	 1	1	1	0 0
\bar{d}	1	 1	0		0	0		0	1	 1	0	0	1 1

On attributes A_1 to A_{r-1} \vec{a} and \vec{b} agree and \vec{c} and \vec{d} agree as well. It contrasts with attributes A_r to A_n , for which we can see that \vec{a} differs from \vec{b} as \vec{c} differs from \vec{d} (and vice-versa)

Prade / Richard (IRIT)

Analogical proportions: A machinery for comparing items

- Analogical proportions for Boolean vectors (it extends to nominal values)
- \overrightarrow{a} : \overrightarrow{b} :: \overrightarrow{c} : \overrightarrow{d} holds if and only if

$$\mathcal{A}^{=}_{\overrightarrow{a},\overrightarrow{b}} = \mathcal{A}^{=}_{\overrightarrow{c},\overrightarrow{d}}, \ \mathcal{D}^{01}_{\overrightarrow{a},\overrightarrow{b}} = \mathcal{D}^{01}_{\overrightarrow{c},\overrightarrow{d}} \ \text{and} \ \mathcal{D}^{10}_{\overrightarrow{a},\overrightarrow{b}} = \mathcal{D}^{10}_{\overrightarrow{c},\overrightarrow{d}}$$
 where

$$\mathcal{A}_{\overrightarrow{a},\overrightarrow{b}}^{=} = \{i \mid a_i = b_i\}$$

$$\mathcal{D}_{\overrightarrow{a},\overrightarrow{b}}^{01} = \{i \mid a_i = 0, b_i = 1\} \text{ and }$$

$$\mathcal{D}_{\overrightarrow{a},\overrightarrow{b}}^{10} = \{i \mid a_i = 1, b_i = 0\}$$

- \vec{d} can be computed from \vec{a} , \vec{b} and \vec{c}
- the 4 vectors are in general all different

Prade / Richard (IRIT)

A D A D A D A

Pairing pairs (a, d) and (b, c)

• \vec{a} : \vec{d} :: \vec{b} : \vec{c} does not hold: see attributes \mathcal{A}_s to \mathcal{A}_n

	\mathcal{A}_1		\mathcal{A}_{i-1}	\mathcal{A}_i	 \mathcal{A}_{j-1}	\mathcal{A}_{j}	 \mathcal{A}_{k-1}	\mathcal{A}_k	 \mathcal{A}_{r-1}	\mathcal{A}_r	 \mathcal{A}_{s-1}	\mathcal{A}_s	 \mathcal{A}_n
\bar{a}	1		1	0	 0	1	 1	0	 0	1.	 1	0	 0
d	1		1	0	 0	0	 0	1	 1	0	 0	1	 1
\overline{b}	1		1	0	 0	1	 1	0	 0	0	 0	1	 1
c	1	•••	1	0	 0	0	 0	1	 1	1	 1	0	 0

 $a: b:: c: d = ((a \land d) \equiv (b \land c)) \land ((\neg a \land \neg d) \equiv (\neg b \land \neg c))$ or equivalently $a: b:: c: d = ((a \land d) \equiv (b \land c)) \land ((a \lor d) \equiv (b \lor c))$

a matter of similarity

8/29

Analogical proportions

- Equation a: b:: c: x may not have a solution in B neither 0: 1:: 1: x nor 1: 0:: 0: x have a solution
- when it exists (iff $(a \equiv b) \lor (a \equiv c)$ holds) it is unique
- $x = c \equiv (a \equiv b)$
- Applies to Boolean vectors: look for $\vec{x} = (x_1, \dots, x_n)$ s.t. $\vec{a} : \vec{b} :: \vec{c} : \vec{x}$ holds: $\Rightarrow n$ equations $a_i : b_i :: c_i : x_i$

analogical proportion solving process is *creative* $\vec{x} \neq \vec{a}, \vec{x} \neq \vec{b}, \vec{x} \neq \vec{c}$

Puzzles

Th. Evans (1963)

Example encoded with 5 Boolean predicates hasRectangle(hR), hasBlackDot(hBD), hasTriangle(hT) hasCircle(hC), hasEllipse(hE) (in that order)

	hR	hBD	hT	hC	hE
а	1	1	0	0	1
b	1	1	0	1	0
С	0	1	1	0	1
X	?	?	?	?	?
		I	I	< • • • • •	

Prade / Richard (IRIT)

General analogical inference

۲

$$\frac{\forall i \in \{1, ..., p\}, a_i : b_i :: c_i : d_i \text{ holds}}{\forall j \in \{p+1, ..., n\}, a_j : b_j :: c_j : d_j \text{ holds}}$$

(Stroppa, Yvon, 2005)

- analogical reasoning amounts to finding completely informed triples (*a*, *b*, *c*) suitable for inferring the missing value(s) of an incompletely informed item (*d*)
- if several triples leading to distinct conclusions a voting procedure may be used
- extends to gradual analogical proportions

Classification

M. Bounhas, H. Prade, G. Richard. Analogy-based classifiers for nominal or numerical data. IJAR 91, 36-55, 2017

- direct application of general inference principle
- one has to predict a class $cl(\vec{x})$ (viewed as a nominal attribute) for a new item \vec{x}
- successively applied to Boolean, nominal and numerical attributes
- analogical classifiers always give exact predictions when the classification process is governed by an affine Boolean function (which includes x-or functions) and only in this case does not prevent to get good results in other cases (as observed in practice) GT App. & Rais. 13 Déc. 2021 12/29

Prade / Richard (IRIT)

Multiple analogical proportions

Difference with case-based reasoning

Analogical proportion-based inference \neq CBR:

It takes advantage of **triples** for extrapolating conclusions,

while Case-Based Reasoning exploits the similarity of the new case with stored cases considered one by one

< 日 > < 同 > < 回 > < 回 > < □ > <

An old treatise
Gaspard Monge. Traité Élémentaire de Statique, à l'usage des Écoles de la Marine (8 éd. de 1788 à 1846)
THEOREM. Fig. 14. If three forces P, Q, R, be represented in intensity and direction by the three sides AB, AC, AD, adjacent to the same angle of a parallelopipedon ABFEGD, so that

P: Q: R:: AB: AC: AD,

their resultant *S* will be represented in intensity and direction by the diagonal *AE* of the parallelopipedon adjacent to the same angle, and we shall have

P: Q: R: S:: AB: AC; AQ;, AS.,

Prade / Richard (IRIT)

Multiple analogical proportions

GT App. & Rais. 13 Déc. 2021

An old treatise
Gaspard Monge. Traité Élémentaire de Statique, à l'usage des Écoles de la Marine (8 éd. de 1788 à 1846)
THEOREM. Fig. 14. If three forces P, Q, R, be represented in intensity and direction by the three

sides *AB*, *AC*, *AD*, adjacent to the same angle of a parallelopipedon *ABFEGD*, so that

P: Q: R:: AB: AC: AD,

their resultant *S* will be represented in intensity and direction by the diagonal *AE* of the parallelopipedon adjacent to the same angle, and we shall have

P: Q: R: S:: AB: AC: AD: AS.

Prade / Richard (IRIT)

Multiple analogical proportions

GT App. & Rais. 13 Déc. 2021

Figure: Fig. 14 in Gaspard Monge's book

Prade / Richard (IRIT)

Multiple analogical proportions

GT App. & Rais. 13 Déc. 2021

٨

A vectorial view of Boolean analogical proportions - 1. Four items a, b, c, d represented by Boolean vectors \vec{a} , \vec{b} , \vec{c} , \vec{d} on a set of *n* features form an analogical proportion componentwise if and only if *abdc* is a parallelogram in \mathbb{R}^n

The man: king::woman:queen example

	sexM	sexF	power position	ordinary position	human	god
Man (\vec{M})	1	0	0	1	1	0
King (\vec{K})	1	0	1	0	1	0
Woman (\overrightarrow{W})	0	1	0	1	1	0
Queen (\vec{Q})	0	1	1	0	1	0
$\overrightarrow{MK} = \overrightarrow{K} - \overrightarrow{M} =$	$\left(\begin{array}{c}1\\0\\1\\0\\1\\0\end{array}\right)$	$-\left(\begin{array}{c} 1\\ 0\\ 0\\ 1\\ 1\\ 0 \end{array} \right)$	$\left. \right) = \left(\begin{array}{c} 0\\ 0\\ 1\\ -1\\ 0\\ 0 \end{array} \right) =$	$\overrightarrow{WQ} = \overrightarrow{Q} - \overrightarrow{W} = \left($	$\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} -$	$ \left(\begin{array}{c} 0\\ 1\\ 0\\ 1\\ 1\\ 0 \end{array}\right) $

A vectorial view of Boolean analogical proportions - 2

• If four Boolean vectors make an analogical proportion \overrightarrow{a} : \overrightarrow{b} :: \overrightarrow{c} : \overrightarrow{d} then $\overrightarrow{d} = \overrightarrow{a} + \overrightarrow{ab} + \overrightarrow{ac}$

$$\overrightarrow{Q} = \overrightarrow{M} + \overrightarrow{MQ} = \overrightarrow{M} + \overrightarrow{MK} + \overrightarrow{MW}$$

• Conversely, $\overrightarrow{d} = \overrightarrow{a} + \overrightarrow{ab} + \overrightarrow{ac}$ can be rewritten as $\overrightarrow{d} - \overrightarrow{a} = \overrightarrow{ad} = \overrightarrow{ab} + \overrightarrow{ac}$. So *abdc* is a parallelogram Then \overrightarrow{a} : \overrightarrow{b} :: \overrightarrow{c} : \overrightarrow{d} holds true. provided that $\nexists i$ such that $a_i = 0$ and $b_i = c_i = 1$, or such that $a_i = 1$ and $b_i = c_i = 0$, in order to guarantee the existence of a Boolean solution d

Prade / Richard (IRIT)

< 47 ▶

Multiple analogical proportions

- in Gaspard Monge 's book
 - $X_1 : X_2 : \cdots : X_n :: Y_1 : Y_2 : \cdots : Y_n$, is to be understood as $\frac{X_1}{Y_1} = \frac{X_2}{Y_2} = \cdots = \frac{X_n}{Y_n}$,
- from a : b : c :: x : y : z Monge draws the numerical equalities $b = \frac{ay}{x}$ and $c = \frac{az}{x}$. From which, one can easily conclude $\frac{b}{c} = \frac{y}{z}$ (by eliminating $\frac{a}{x}$)
- Counterpart for Boolean analogical proportions?
- See *a* : *b* : *c* :: *x* : *y* : *z* as the conjunction of *a* : *b* :: *x* : *y* and *a* : *c* :: *x* : *z*
- by applying central permutation, symmetry and transitivity b : c :: y : z follows

Boolean valuations and postulates 000111 111000 000000 001001 010010 011011 100100 101101 110110 111111

Table: Valid valuations for a : b : c :: x : y : z

2 postulates *a* : *a* :: *x* : *x* : *x* and *a* : *b* : *c* :: *a* : *b* : *c*

symmetry still holds

Prade / Richard (IRIT)

Multiple analogical proportions

< 17 ▶

19/29

Multiple analogical proportions

Inference and triangulation: Analogy solving problem

Figure: Triangulation example

Since the proportion King:Man::Queen:Woman holds, the two solutions x should be the same

Prade / Richard (IRIT)

Multiple analogical proportions

GT App. & Rais. 13 Déc. 2021

Triple analogical proportion

- In the *numerical* case, a : b : c : d :: x : y : z : t is understood as $b = \frac{ay}{x}$, $c = \frac{az}{x}$ and $d = \frac{at}{x}$
- in the Boolean setting a: b: c: d :: x : y : z : t can be defined by the conjunction of 3 proportions: a: b :: x : y, a: c :: x : z and a: d :: x : t from which one can derive 3 other proportions b: c :: y : z, b : d :: y : t, and c : d :: z : t, using transitivity
- stating that $a_1 : a_2 : \cdots : a_n :: x_1 : x_2 : \cdots : x_n$ holds, establishes a parallel between two situations, one described by the a_i 's, the other described by the x_i 's, with a one to one correspondence $a_i > a_i > a_i$

Triple analogical proportion

- In the *numerical* case, a : b : c : d :: x : y : z : t is understood as $b = \frac{ay}{x}$, $c = \frac{az}{x}$ and $d = \frac{at}{x}$
- in the Boolean setting a: b: c: d :: x : y : z : t can be defined by the conjunction of 3 proportions: a: b :: x : y, a: c :: x : z and a : d :: x : t from which one can derive 3 other proportions b : c :: y : z, b : d :: y : t, and c : d :: z : t, using transitivity
- stating that $a_1 : a_2 : \cdots : a_n :: x_1 : x_2 : \cdots : x_n$ holds, establishes a parallel between two situations, one described by the a_i 's, the other described by the x_i 's, with a one to one correspondence $a_i : a_i : a$

Example - 1 dog:pig:wolf:wild boar ::

puppy:pialet:wolf cub:vouna wild boar

wolf:wild boar:voung wild boar:wolf cub

Prade / Richard (IRIT)

Multiple analogical proportions

GT App. & Rais. 13 Déc. 2021

Analogical proportions are easy to obtain

 by taking pairs of mutually exclusive Boolean properties (p ∧ p' = ⊥, q ∧ q' = ⊥, r ∧ r' = ⊥), and considering four items a, a', b, b' respectively described on the 6 properties (p, q, r, r', q', p') by

	р	q	r	r'	q'	p'
а	1	1	1	0	0	0
a'	1	1	0	1	0	0
b	1	0	1	0	1	0
b'	1	0	0	1	1	0

a : a' :: b : b' and a, a', b, b' make a kind of square of opposition (not the traditional one!)

Analogical proportions are easy to obtain

 by taking pairs of mutually exclusive Boolean properties (p ∧ p' = ⊥, q ∧ q' = ⊥, r ∧ r' = ⊥), and considering four items a, a', b, b' respectively described on the 6 properties (p, q, r, r', q', p') by

	р	q	r	r'	q'	p'
а	1	1	1	0	0	0
a'	1	1	0	1	0	0
b	1	0	1	0	1	0
b'	1	0	0	1	1	0

a : a' :: b : b' and a, a', b, b' make a kind of square of opposition (not the traditional one!)

$$\mathbf{a}(q,r) - \mathbf{a}'(q,r')$$

 $\mathbf{b}(q',r) - \mathbf{b}'(q',r')$

An equivalent binary (classification) tree

э

Introducing one more level in the tree

From the square to the cube

Table 1	b(animal)	p(canid)	q(tame)	<i>r</i> (young)	r'(adult)	q'(wild)	p'(suidae)	o'(plant)
a puppy	1	1	1	1	0	0	0	0
a ' dog	1	1	1	0	1	0	0	0
b wolfcub	1	1	0	1	0	1	0	0
b' wolf	1	1	0	0	1	1	0	0
c piglet	1	0	1	1	0	0	1	0
c ' pig	1	0	1	0	1	0	1	0
d yg.wd.bo.	. 1	0	0	1	0	1	1	0
d ' wildboar		0	0	0	1	1	1	0

æ

Analogical cube

Parallel facets, parallel edges are in opposition

Clearly we can then generate *hypercubes* by introducing more dichotomies

Prade / Richard (IRIT)	Multiple analogical proportions	GT App. & Rais. 13 Déc. 2021	28 / 29

Concluding remarks

Analogical proportions do not come in isolation

- use of analogy-based explanations in machine learning
- interfacing symbolic (high level features) and numerical (embeddings) representations