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Outline

In this presentation, we focus on two objectives:

i) the establishment of meeting points between Knowledge
Representation and Reasoning (KRR) and Machine Learning (ML)

ii) the elaboration of a processing chain for eXplainable Artificial
Intelligence (XAI) in order to be able to generate AI explanations in
natural language and to evaluate them:
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Figure 1: Proposed processing chain to generate and evaluate explanations
(Baaj et al. 2019)
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Introduction



Introduction

• Possibility Theory is a well-known framework for the representation of
incomplete or imprecise information (What is possible without being
certain at all? What is certain to some extent? )

• Dubois and Prade (2020) emphasized the development of possibilistic
learning methods that would be consistent with if-then rule-based
reasoning

• Dubois and Prade (2020) highlighted the approach of Farreny and
Prade (1989), who proposed a min-max equation system in order to
develop the explanatory capabilities of possibilistic rule based systems
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Background



Background – Possibilistic rule-based system

• A set of n if-then possibilistic rules R1, R2, · · · , Rn

• R i : “if pi then qi ” with an uncertainty propagation matrix:[
π(qi |pi ) π(qi |¬pi )
π(¬qi |pi ) π(¬qi |¬pi )

]
=

[
1 si
ri 1

]

• pi stands for “ai (x) ∈ Pi ” and qi for “b(x) ∈ Qi ”:

ai and b: attributes applied to an item x

Pi and Qi : subsets of the respective attribute domains (Dai ,Db)
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Background – Possibilistic rule-based system

• Information about ai (x) represented by a possibility distribution
πai (x) : Dai → [0, 1] normalized i.e. ∃u ∈ Dai , πai (x)(u) = 1
• Evaluation of pi : “ai (x) ∈ Pi ”:

π(pi ) = Π(Pi ) = supu∈Pi
πai (x)(u) = λi

π(¬pi ) = Π(Pi ) = supu∈Pi
πai (x)(u) = 1 − n(pi ) = ρi

where n(pi ) = N(Pi ) = infu∈Pi
(1 − πai (x)(u)) = 1 − π(¬pi )

Consequence of the normalization of πai (x): max(π(pi ), π(¬pi )) = 1

• In case of a compounded premise pi = p1,i ∧ · · · ∧ pk,i :
π(pi ) = minkj=1 π(pj ,i ) and π(¬pi ) = maxkj=1 π(¬pj ,i )
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Background – Possibilistic rule-based system

• Uncertainty propagation:
[
π(qi )
π(¬qi )

]
=

[
1 si
ri 1

]
□max

min

[
λi

ρi

]
=

[
αi

βi

]
□max

min : matricial product with min as product and max as addition
• As max(λi , ρi ) = 1 we have:

αi = max(si , λi )

βi = max(ri , ρi )

• Possibility distribution of the attribute b associated to R i :

π∗i
b(x)(u) = αiµQi

(u) + βiµQi
(u) for any u ∈ Db

µQi
, µQi

: characteristic functions of Qi ,Qi

• Possibility distribution of b with n rules:

π∗
b(x)(u) = min(π∗1

b(x)(u), π
∗2
b(x)(u), · · · , π

∗n
b(x)(u))
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Background – Cascade: two chained rule sets

• Two sets of possibilistic rules: R1,R2, · · · ,Rn and R ′1,R ′2, · · · ,R ′m

• Same attribute b used in both the conclusions of the R i and the
premises of the R ′j .

• Each rule R ′
j : “if p′j then q′j ”:

uncertainty propagation matrix:
[
1 s ′j
r ′j 1

]
p′j stands for “b(x) ∈ Q ′

j ” and q′j for “c(x) ∈ Q ′′
j ”

Q ′
j ⊆ Db and Q ′′

j ⊆ Dc

λ′
j = π(p′j) and ρ′j = π(¬p′j)

Possibilistic rule-based system: min-max inference and explainability - I.Baaj - GT AR - GDR IA - 13/12/2021 7/51



Background – Cascade: two chained rule sets

• Two sets of possibilistic rules: R1,R2, · · · ,Rn and R ′1,R ′2, · · · ,R ′m

• Same attribute b used in both the conclusions of the R i and the
premises of the R ′j .

• Each rule R ′
j : “if p′j then q′j ”:

uncertainty propagation matrix:
[
1 s ′j
r ′j 1

]
p′j stands for “b(x) ∈ Q ′

j ” and q′j for “c(x) ∈ Q ′′
j ”

Q ′
j ⊆ Db and Q ′′

j ⊆ Dc

λ′
j = π(p′j) and ρ′j = π(¬p′j)

Possibilistic rule-based system: min-max inference and explainability - I.Baaj - GT AR - GDR IA - 13/12/2021 7/51



Background – Example

Cascade of Farreny and Prade (1989)

• First set of possibilistic rules:

R1: if a person likes meeting people, then recommended professions are professor or
businessman or lawyer or doctor
R2: if a person is fond of creation/inventions, then recommended professions are
engineer or public researcher or architect

- R3: if a person looks for job security and is fond of intellectual speculation, then
recommended professions are professor or public researcher

where Dprofession = {businessman, lawyer, doctor, professor, researcher, architect, engineer,
others}, s1 = 1, r1 = 0.3, s2 = 0.2, r2 = 0.4, s3 = 1, r3 = 0.3.

• Second set of possibilistic rules:

R′1: if a person is a professor or a researcher, then her salary is rather low
R′2: if a person is an engineer, a lawyer or an architect, her salary is average or high
R′3: if a person is a business man or a doctor, then her salary is high

where Dsalary={low,average,high}, s′1 = 1, r ′1 = 0.7, s′2 = 0.8, r ′2 = 0.2, s′3 = 0.6 and
r ′3 = 0.4.
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Background – Equation system

• Farreny and Prade (1989) proposed an equation system denoted
OV = MR IV in order to:

describe the output possibility distribution
perform a sensitivity analysis

• Dubois and Prade (2020) made explicit this equation system for the
case of two rules R1 and R2:

Π(Q1 ∩ Q2)

Π(Q1 ∩ Q2)

Π(Q1 ∩ Q2)

Π(Q1 ∩ Q2)

 =


s1 1 s2 1
s1 1 1 r2
1 r1 s2 1
1 r1 1 r2

□min
max


λ1
ρ1
λ2
ρ2

 =


min(α1, α2)
min(α1, β2)
min(β1, α2)
min(β1, β2)


□min

max: matricial product with max as product and min as addition
• Q1 ∩ Q2,Q1 ∩ Q2,Q1 ∩ Q2,Q1 ∩ Q2 form a partition of Db
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Generalized equation system



Generalized equation system

• From a possibilistic rule-based system with n rules R1, R2, · · · , Rn:

On = Mn□
min
maxIn

• To understand the output vector On, we introduce:

(E
(n)
k )1≤k≤2n : an explicit partition of Db constructed with the sets

Q1,Q2, · · · ,Qn used in the conclusions of the rules and
their complements
Bn: a matrix constructed inductively w.r.t the number of rules

• For i = 1, 2, · · · , n, the matrices Mi , Ii ,Bi are defined according to:

s1, s2, · · · , si and r1, r2, · · · , ri for Mi

λ1, λ2, · · · , λi and ρ1, ρ2, · · · , ρi for Ii
α1, α2, · · · , αi and β1, β2, · · · , βi for Bi
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Generalized equation system – (E
(i)
k )1≤k≤2i : a partition of Db

For each i = 1, 2, · · · , n, the partition (E
(i)
k )1≤k≤2i is defined by the

following two conditions:

E
(1)
1 = Q1 and E

(1)
2 = Q1

and for i > 1: E (i)
k =

{
E
(i−1)
k ∩ Qi if 1 ≤ k ≤ 2i−1

E
(i−1)
k−2i−1 ∩ Qi if 2i−1 < k ≤ 2i
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Generalized equation system – Constructions of Mi , Ii ,Bi

• Respective size of Mi , Ii and Bi : (2i , 2i), (2i , 1) and (2i , i)

• i = 1, we take M1 =

[
s1 1
1 r1

]
, I1 =

[
λ1
ρ1

]
, B1 =

[
α1
β1

]

• i > 1, we define Mi =

[
Mi−1 Si
Mi−1 Ri

]
, Ii =

Ii−1
λi

ρi

, Bi =



Bi−1

αi

αi
...
αi

Bi−1

βi
βi
...
βi


where Si =


si 1
si 1
...

...
si 1

 and Ri =


1 ri
1 ri
...

...
1 ri

 of size (2i−1, 2)
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Generalized equation system – Relation: partition and Bi

• E
(i)
k is linked to the row Lk = (γ1, γ2, · · · , γi ) of Bi with γ ∈ {α, β}

by:

E
(i)
k = T1 ∩ T2 · · · ∩ Ti with Tj =

{
Qj if γj = αj

Qj if γj = βj
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Generalized equation system – Matrix ⊡minBi

• For any i = 1, 2, · · · , n, we set:

⊡minBi = [o
(i)
k ]1≤k≤2i

⊡min: the minimum of the coefficients of each row in a matrix

• For any k ∈ {1, 2, · · · , 2i}, we deduce:

o
(i)
k =

{
min(o

(i−1)
k , αi ) if 1 ≤ k ≤ 2i−1

min(o
(i−1)
k−2i−1 , βi ) if 2i−1 < k ≤ 2i

• Finally, we obtain:

Theorem

Mi□
min
maxIi = ⊡minBi
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Generalized equation system – Example

A possibilistic rule-based system composed of n = 3 rules

• The sets of the partition (E
(3)
k )1≤k≤8 are the following: Q1 ∩Q2 ∩Q3,

Q1 ∩ Q2 ∩ Q3, Q1 ∩ Q2 ∩ Q3, Q1 ∩ Q2 ∩ Q3, Q1 ∩ Q2 ∩ Q3,
Q1 ∩ Q2 ∩ Q3, Q1 ∩ Q2 ∩ Q3 and Q1 ∩ Q2 ∩ Q3

• We check the Theorem by direct calculation:

O3 = M3□
min
maxI3

=



s1 1 s2 1 s3 1
1 r1 s2 1 s3 1
s1 1 1 r2 s3 1
1 r1 1 r2 s3 1
s1 1 s2 1 1 r3
1 r1 s2 1 1 r3
s1 1 1 r2 1 r3
1 r1 1 r2 1 r3


□min

max



λ1
ρ1
λ2
ρ2
λ3
ρ3

 =



min(α1, α2, α3)
min(β1, α2, α3)
min(α1, β2, α3)
min(β1, β2, α3)
min(α1, α2, β3)
min(β1, α2, β3)
min(α1, β2, β3)
min(β1, β2, β3)


= ⊡minB3
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Equation system properties



Equation system properties – Output possibility distribution

• Using the coefficients of Oi = ⊡minBi and the characteristic functions
µ
E

(i)
1
, µ

E
(i)
2
, · · · , µ

E
(i)

2i
of the sets E

(i)
1 ,E

(i)
2 , · · · ,E (i)

2i :

Theorem
The output possibility distribution π∗

b(x),i associated to the first i rules is:

π∗
b(x),i =

∑
1≤k≤2i

o
(i)
k µ

E
(i)
k

• Consequence: ∀u ∈ Db, ∃k0 unique s.t u ∈ E
(i)
k0

and π∗
b(x),i (u) = o

(i)
k0

• π∗
b(x),i is normalized iff: ∃k ∈ {1, 2, · · · , 2i} s.t E (i)

k ̸= ∅ and o
(i)
k = 1
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Equation system properties – Output possibility distribution

Example (continued) : a possibilistic rule-based system composed of
n = 3 rules

• The characteristic functions of the partition (E
(3)
k )1≤k≤8 are

µQ1∩Q2∩Q3 , µQ1∩Q2∩Q3
, µQ1∩Q2∩Q3

, µQ1∩Q2∩Q3
, µQ1∩Q2∩Q3

,
µQ1∩Q2∩Q3

, µQ1∩Q2∩Q3
and µQ1∩Q2∩Q3

• The output possibility distribution is:

π∗
b(x),3 = min(π∗1

b(x), π
∗2
b(x), π

∗3
b(x))

= min(α1, α2, α3)µQ1∩Q2∩Q3 +min(β1, α2, α3)µQ1∩Q2∩Q3

+min(α1, β2, α3)µQ1∩Q2∩Q3
+min(β1, β2, α3)µQ1∩Q2∩Q3

+min(α1, α2, β3)µQ1∩Q2∩Q3
+min(β1, α2, β3)µQ1∩Q2∩Q3

+min(α1, β2, β3)µQ1∩Q2∩Q3
+min(β1, β2, β3)µQ1∩Q2∩Q3
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Equation system properties – Possibility & necessity measures

• J contains the indexes of the non-empty sets of the partition:

J = {k ∈ {1, 2, · · · , 2i}
∣∣ E (i)

k ̸= ∅} and ω = card(J)

Arrange the elements of J as a strictly increasing sequence:
1 ≤ k1 < k2 < · · · < kω ≤ 2i

We have ω ≤ min(d , 2i ) where d = card(Db)

[Π(E
(i)
k )]k∈J = [o

(i)
k ]k∈J

• Let Oi , Mi and Bi be the matrices obtained from Oi , Mi and Bi

respectively, by deleting each row whose index is not in J
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Equation system properties – Example (continued)

• First set of possibilistic rules of the cascade of Farreny and Prade
(n = 3):

R1: if a person likes meeting people, then recommended professions are professor or
business man or lawyer or doctor
R2: if a person is fond of creation/inventions, then recommended professions are
engineer or public researcher or architect
R3: if a person looks for job security and is fond of intellectual speculation,then
recommended professions are professor or public researcher

where Dprofession = {business man,lawyer, doctor, professor, researcher, architect, engineer,
others}, s1 = 1, r1 = 0.3, s2 = 0.2, r2 = 0.4, s3 = 1, r3 = 0.3
• Partition of Dprofession: E

(3)
k1

= {researcher}, E (3)
k2

= {professor}, E (3)
k3

=

{engineer, architect}, E (3)
k4

= {business man, lawyer, doctor} and E
(3)
k5

= {others}
• Equation system:

Π(E
(3)
k1

)

Π(E
(3)
k2

)

Π(E
(3)
k3

)

Π(E
(3)
k4

)

Π(E
(3)
k5

)


=


1 r1 s2 1 s3 1
s1 1 1 r2 s3 1
1 r1 s2 1 1 r3
s1 1 1 r2 1 r3
1 r1 1 r2 1 r3

□min
max


λ1
ρ1
λ2
ρ2
λ3
ρ3


The vector O3 and the matrix M3 have five rows (while O3 and M3 have eight rows).
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Equation system properties

• Let: ε(T ) =

{
1 si T ̸= ∅
0 if T = ∅

• To any matrix A = [aij ], we associate A◦ = [1 − aij ]. (A◦)◦ = A.

• For Q ⊆ Db, we have Q =
⋃

1≤j≤ω E
(i)
kj

∩ Q.
The possibility measure is:

Π∗(Q) = max
u∈Q

π∗
b(x)(u) = ∇Q□

max
minOi

where ∇Q =
[
ε(E

(i)
k1

∩ Q) ε(E
(i)
k2

∩ Q) · · · ε(E
(i)
kω

∩ Q)
]

• As Π∗(Q) = ∇Q□
max
minOi , the necessity measure is then:

N∗(Q) = 1 − Π∗(Q) = (Π∗(Q))◦

By the correspondences between the operators □min
max and □max

min we obtain:

N∗(Q) = (∇Q□
max
minOi )

◦ = ∇Q
◦□min

maxOi
◦
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Equation system properties – Example (continued)

First set of possibilistic rules of the cascade of Farreny and Prade:

• Partition of Dprofession: E
(3)
k1

= {researcher}, E (3)
k2

= {professor}, E (3)
k3

=

{engineer, architect}, E (3)
k4

= {business man, lawyer, doctor} and E
(3)
k5

= {others}
• Equation system with λ1 = 1, ρ1 = 0.5, λ2 = 0.2, ρ2 = 1, λ3 = 1, ρ3 = 0.6:

Π(E
(3)
k1

)

Π(E
(3)
k2

)

Π(E
(3)
k3

)

Π(E
(3)
k4

)

Π(E
(3)
k5

)


=


1 r1 s2 1 s3 1
s1 1 1 r2 s3 1
1 r1 s2 1 1 r3
s1 1 1 r2 1 r3
1 r1 1 r2 1 r3

□min
max


λ1
ρ1
λ2
ρ2
λ3
ρ3

 =


0.2
1

0.2
0.6
0.5



Let Q = {professor, researcher}. The possibility measure of Q is:

Π∗(Q) = ∇Q□
max
minO3 = 1

where ∇Q =
[
ε(E

(i)
k1

∩ Q) ε(E
(i)
k2

∩ Q) · · · ε(E
(i)
kω

∩ Q)
]
=

[
1 1 0 0 0

]
The necessity measure of Q is 0.4.
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Cascade and applications



Cascade and Applications

• Two equation systems:

On = Mn□min
maxIn for R1,R2, · · · ,Rn

O′
m = M′

m□
min
maxI

′
m for R ′1,R ′2, · · · ,R ′m

• The input vector I ′m is linked to the output vector On by:

I ′m = ∇□max
min On where ∇ =


∇Q′

1
∇

Q′
1

...
∇Q′

m

∇Q′
m


• The output vector O ′

m is deduced from the first system:

O′
m = M′

m□
min
maxI

′
m

= M′
m□

min
max(∇□max

minOn)

= M′
m□

min
max(∇□max

min (Mn□
min
maxIn))
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Cascade – Example: cascade of Farreny and Prade

• First set of possibilistic rules:

R1: if a person likes meeting people, then recommended professions are professor or
business man or lawyer or doctor
R2: if a person is fond of creation/inventions, then recommended professions are
engineer or public researcher or architect
R3: if a person looks for job security and is fond of intellectual speculation,then
recommended professions are professor or public researcher

where Dprofession = {business man,lawyer, doctor, professor, researcher, architect, engineer,
others}, s1 = 1, r1 = 0.3, s2 = 0.2, r2 = 0.4, s3 = 1, r3 = 0.3
• Partition of Dprofession: E

(3)
k1

= {researcher}, E (3)
k2

= {professor},
E

(3)
k3

= {engineer, architect}, E (3)
k4

= {business man, lawyer, doctor} and E
(3)
k5

= {others}
• Equation system with λ1 = 1, ρ1 = 0.5, λ2 = 0.2, ρ2 = 1, λ3 = 1, ρ3 = 0.6:

Π(E
(3)
k1

)

Π(E
(3)
k2

)

Π(E
(3)
k3

)

Π(E
(3)
k4

)

Π(E
(3)
k5

)


=


1 r1 s2 1 s3 1
s1 1 1 r2 s3 1
1 r1 s2 1 1 r3
s1 1 1 r2 1 r3
1 r1 1 r2 1 r3

□min
max


λ1
ρ1
λ2
ρ2
λ3
ρ3

 =


0.2
1

0.2
0.6
0.5


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Cascade – Example: cascade of Farreny and Prade

• Second set of possibilistic rules:
R′1: if a person is a professor or a researcher, then her salary is rather low
R′2: if a person is an engineer, a lawyer or an architect, her salary is average or high
R′3: if a person is a business man or a doctor, then her salary is high

where Dsalary={low,average,high}, s′1 = 1, r ′1 = 0.7, s′2 = 0.8, r ′2 = 0.2, s′3 = 0.6 and
r ′3 = 0.4

• Partition of Dsalary : E
′(3)
k1

= {high}, E
′(3)
k2

= {average} and E
′(3)
k3

= {low}

• I ′m = ∇□max
min O3 =



∇Q′
1

∇
Q′

1
∇Q′

2
∇

Q′
2

∇Q′
3

∇
Q′

3


□max

min O3 =


1 1 0 0 0
0 0 1 1 1
0 0 1 1 0
1 1 0 1 1
0 0 0 1 0
1 1 1 1 1

□max
min


0.2
1

0.2
0.6
0.5

 =


1

0.6
0.6
1

0.6
1


• Equation system:

Π(E
′(3)
k1

)

Π(E
′(3)
k2

)

Π(E
′(3)
k3

)

 =

 1 r ′1 s′2 1 s′3 1
1 r ′1 s′2 1 1 r ′3
s′1 1 1 r ′2 1 r ′3

□min
max


λ′

1
ρ′1
λ′

2
ρ′2
λ′

3
ρ′3

 =

0.6
0.7
1


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1
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1

0.6
0.6
1

0.6
1
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• Equation system:

Π(E
′(3)
k1

)

Π(E
′(3)
k2

)

Π(E
′(3)
k3

)

 =

 1 r ′1 s′2 1 s′3 1
1 r ′1 s′2 1 1 r ′3
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
λ′

1
ρ′1
λ′

2
ρ′2
λ′

3
ρ′3

 =

0.6
0.7
1


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Cascade

• (Reminder) The output vector O ′
m is deduced from the first system:

O′
m = M′

m□
min
max(∇□max

min (Mn□
min
maxIn))

• With the matrices In
◦, Mn

◦ and M′
m
◦, we can express the equations

involved in the cascade using only the operator (A□max
minB)

◦:

On = (Mn
◦□max

min In
◦)◦

I ′m
◦
= (∇□max

minOn)
◦

O′
m = (M′

m
◦□max

min I
′
m
◦
)◦

• We have:

O′
m = (M′

m
◦□max

min (∇□max
min (Mn

◦□max
min In

◦)◦)◦)◦
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Cascade – Representation by a min-max neural network

• The cascade construction is represented by a min-max neural network:

x1

x2

· · ·

x2n

i1

i2

· · ·

i2n

h1

h2

· · ·

hω

v
(1)
1,1
v
(1)
2,1

v
(1)
2n,1

h′1

h′2

· · ·

h′2m

v
(2)
1,1
v
(2)
2,1

v
(2)
ω,1

o′
1

o′
2

· · ·

o′
ω′

v
(3)
1,1
v
(3)
2,1

v
(3)
2m,1

Figure 2: Min-max neural network architecture

• For a neuron x linked by t edges v1, v2, · · · , vt to t ancestors, whose
output values are y1, y2, · · · , yt we compute:

- its input value: 1 − max
1≤j≤t

min(vj , yj) = min
1≤j≤t

max(1 − vj , 1 − yj)

- its output value: f (x) = x
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Applications of the equation system

In my PhD thesis:

- We study the existence of a minimal input vector for π∗
b(x)(u) = 1

- We define an algorithm to rebuild the equation system when we
remove a rule. It outputs the equation system associated to the
remaining subset of rules.
Therefore, it enables us to obtain all the equation subsystems of an
initial equation system

Possibilistic rule-based system: min-max inference and explainability - I.Baaj - GT AR - GDR IA - 13/12/2021 27/51



Perspectives

Perspectives:

- Sensitivity analysis and explainability, as suggested by Farreny and
Prade (1989)

- Coherence of the rule base: conditions on the parameters of the
rules and the input vector

- Possibilistic learning: a min-max gradient descent method may be
developed for our neural network

- The learning of the parameters of the rules si , ri may be done with
the help of the algorithms for solving systems of fuzzy relational
equations (Sanchez 1977, Peeva 2013)
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Explainability: justifying inference
results



Notations

• Representation of the information given by the possibility and necessity
degrees of a premise p of a rule “if p then q”:

Notation
For a premise p, the triplet (p, sem, d) denotes either (p,P, π(p)) or
(p,C, n(p)), where sem ∈ {P,C} (P for possible, C for certain) is the
semantics attached to the degree d ∈ {π(p), n(p)}

• Possibility degree of an output attribute value u computed by:

π∗
b(x)(u) = min(γ1, γ2, . . . , γn), (1)

where γi = π∗i
b(x)(u) = max(ti , θi ) with (ti , θi ) =

{
(si , λi ) if γi = αi

(ri , ρi ) if γi = βi

• Triplets according to the γ1, γ2, . . . , γn appearing in the relation (1):

(pi , semi , di ) =

{
(pi ,P, λi ) if γi = αi

(pi ,C, 1 − ρi ) if γi = βi
(2)

Possibilistic rule-based system: min-max inference and explainability - I.Baaj - GT AR - GDR IA - 13/12/2021 29/51



Notations

• Representation of the information given by the possibility and necessity
degrees of a premise p of a rule “if p then q”:

Notation
For a premise p, the triplet (p, sem, d) denotes either (p,P, π(p)) or
(p,C, n(p)), where sem ∈ {P,C} (P for possible, C for certain) is the
semantics attached to the degree d ∈ {π(p), n(p)}

• Possibility degree of an output attribute value u computed by:

π∗
b(x)(u) = min(γ1, γ2, . . . , γn), (1)

where γi = π∗i
b(x)(u) = max(ti , θi ) with (ti , θi ) =

{
(si , λi ) if γi = αi

(ri , ρi ) if γi = βi

• Triplets according to the γ1, γ2, . . . , γn appearing in the relation (1):

(pi , semi , di ) =

{
(pi ,P, λi ) if γi = αi

(pi ,C, 1 − ρi ) if γi = βi
(2)

Possibilistic rule-based system: min-max inference and explainability - I.Baaj - GT AR - GDR IA - 13/12/2021 29/51



Example

• Blood sugar control system for a patient with type 1 diabetes:

activity (act) current-bloodsugar (cbs) future-bloodsugar (fbs)
R1 dinner, drink-coffee, lunch medium, high high
R2 long-sleep, sport, walking low, medium low
R3 alcohol-consumption, breakfast low, medium low, medium

Table 1: Rule base for the control of the blood sugar level.
We have: Dact = {alcohol-consumption, breakfast, dinner, drink-coffee, long-sleep, lunch,
sport, walking} and Dcbs = Dfbs = {low, medium, high}.

• By the relation (1), the possibility degree of the output values low, medium and high are:

πfbs(x)(low) = min(γ l
1, γ

l
2, γ

l
3), where γ l

1 = β1 = max(r1, ρ1), γ l
2 = α2 = max(s2, λ2),

γ l
3 = α3 = max(s3, λ3).

πfbs(x)(medium) = min(γm
1 , γm

2 , γm
3 ), where γm

1 = β1, γm
2 = β2 = max(r2, ρ2),

γm
3 = α3.

πfbs(x)(high) = min(γh
1 , γ

h
2 , γ

h
3), where γh

1 = α1 = max(s1, λ1), γh
2 = β2,

γh
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Justifying inference results

Farreny and Prade’s approach focuses on two explanatory purposes for
an output attribute value u ∈ Db:

(i) How to get π∗
b(x)(u) strictly greater or lower than a given τ ∈ [0, 1]?

Reminder: the parameters of the rules are set:
π∗
b(x)(u) ranges between ω = min(t1, t2, . . . , tn) and 1
• for π∗

b(x)(u) > τ : ∀i ∈ {j ∈ {1, 2, . . . , n} | tj ≤ τ} we have θi > τ

• for π∗
b(x)(u) < τ with ω < τ ≤ 1: ∃i ∈ {j ∈ {1, 2, . . . , n} | tj < τ} s.t. θi < τ

Example

For our blood sugar control system with s1 = 1, r2 = r3 = 0, we have
π∗
fbs(x)(high) > 0.5 iff ρ2 > 0.5 and ρ3 > 0.5

(ii) What are the degrees of the premises justifying π∗
b(x)(u) = τ?
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Justifying inference results – Justifying π∗
b(x)(u) = τ

• Let two sets compare the parameters t1, t2, · · · tn of the rules to the
degrees θ1, θ2, · · · , θn:

JP = {i ∈ {1, 2, · · · , n} | ti ≤ θi} and JR = {i ∈ {1, 2, · · · , n} | ti ≥ θi}

We have {1, 2, · · · , n} = JP ∪ JR but JP or JR may be empty

• With the convention min∅ = 1, we take:

- cθ = mini∈JP θi : the lowest possibility degree justifiable by premises
(if JP ̸= ∅)

- ct = mini∈JR ti : the lowest possibility degree justifiable by the
parameters of the rules (if JR ̸= ∅)

• By using the properties of the min function, we establish:

Proposition

τ = min(cθ, ct)
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Justifying inference results

• When we can’t explain by degrees of premises: if JP = ∅
As the degrees θ1, θ2, · · · , θn of the premises are computed using the
possibility distributions of the input attributes, we may have JP = ∅.
In that case, cθ = 1, JR = {1, 2, · · · , n} and:

π∗
b(x)(u) = ct = min(t1, t2, · · · , tn)
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Example (continued)

• Blood sugar control system for a patient with type 1 diabetes:

activity (act) current-bloodsugar (cbs) future-bloodsugar (fbs)
R1 dinner, drink-coffee, lunch medium, high high
R2 long-sleep, sport, walking low, medium low
R3 alcohol-consumption, breakfast low, medium low, medium

Table 2: Rule base for the control of the blood sugar level.

Inputs: the patient wants to drink a coffee and his current blood sugar level is medium:

πact(x)(drink-coffee) = 1, πcbs(x)(medium) = 1 and πcbs(x)(low) = 0.3

while the other elements of the domains of the input attributes have a possibility degree
equal to zero. We have s1 = 1, s2 = 0.7, s3 = 1, r1 = r2 = r3 = 0. and λ1 = 1, ρ1 = 0.3,
λ2 = 0, ρ2 = 1, λ3 = 0 and ρ3 = 1. The obtained output possibility distribution is:

π∗
fbs(x)(low) = 0.3, π∗

fbs(x)(medium) = 0.3 and π∗
fbs(x)(high) = 1

We form the following sets for each output attribute value and deduce their respective cθ, ct :

- for low : JPl = {1} and JRl = {2, 3} : c lθ = 0.3 = πfbs(x)(low) and c lt = 0.7

- for medium: JPm = {1, 2} and JRm = {3} : cmθ = 0.3 = πfbs(x)(medium) and cmt = 1

- for high: JPh = {1, 2, 3} and JRh = {1} : chθ = cht = 1 = πfbs(x)(high)
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Extraction of premises justifying π∗
b(x)(u) = τ

To explain the inference results of our possibilistic rule-based system, we
introduce a threshold η > 0:

Definition
If a possibility (resp. necessity) degree is higher than the threshold η, it
intuitively means that the information it models is relevantly possible
(resp. certain)

For a given output value u ∈ Db, we extract the rule premises justifying
the possibility degree π∗

b(x)(u) = τ by the following formula:

Jb(x)(u) =

{{
(pi , semi , di ) | i ∈ JP and θi = τ

}
if τ ≥ η{

(pi , semi , di ) | i ∈ {1, 2, . . . , n} and γi < η
}

if τ < η

Notes: if τ ≥ η, we rely on JP (which may be empty) and the condition τ = cθ
Otherwise, if τ < η it always exists at least a premise justifying π∗

b(x)
(u)
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Example (continued)

• Blood sugar control system for a patient with type 1 diabetes:

activity (act) current-bloodsugar (cbs) future-bloodsugar (fbs)
R1 dinner, drink-coffee, lunch medium, high high
R2 long-sleep, sport, walking low, medium low
R3 alcohol-consumption, breakfast low, medium low, medium

Table 3: Rule base for the control of the blood sugar level.

We have s1 = 1, s2 = 0.7, s3 = 1, r1 = r2 = r3 = 0. and λ1 = 1, ρ1 = 0.3, λ2 = 0, ρ2 = 1,
λ3 = 0 and ρ3 = 1. The obtained output possibility distribution is:

π∗
fbs(x)(low) = 0.3, π∗

fbs(x)(medium) = 0.3 and π∗
fbs(x)(high) = 1

Let us take η = 0.1. We obtain for each output attribute value:

- Jfbs(x)(low) = Jfbs(x)(medium) = {(p1,C, 0.7)}
- Jfbs(x)(high) = {(p1,P, 1), (p2,C, 0), (p3,C, 0)}

If instead of r1 = 0, we take r1 > 0.3, then for u = low , the corresponding set JP is empty:
no justification in terms of premises could be given in that case
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Justification and unexpectedness
of π∗

b(x)
(u)



Justification and unexpectedness of π∗
b(x)(u)

Purpose : for an output attribute value u ∈ Db, apply reduction
functions (Rπ,Rn,Cπ,Cn) to the selected premises in Jb(x)(u) in order
to form explanations of π∗

b(x)(u):

- Using Rπ,Rn: the justification of π∗
b(x)(u): A set of possibilistic

expressions that are sufficient to justify “b(x) is u at π∗
b(x)(u)”

- Using Cπ,Cn: the unexpectedness of π∗
b(x)(u): A set of possi-

ble or certain possibilistic expressions, which may appear to be incom-
patible with π∗

b(x)(u) while not being involved in its determination
• In Simplicity Theory (Dessalles 2008), the unexpectedness aims at capturing

exactly what people consider surprising in a given situation
• An unexpectedness X let us formulate statements such as:

“even if X, b(x) is u at π∗
b(x)

(u)”

• It is in the same vein as the “even-if-because” of (Darwiche 2020)
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Justification and unexpectedness of π∗
b(x)(u)

Preliminaries : definition of two proposition reduction functions Pπ, Pn

• Let a be an attribute with a normalized possibility distribution πa(x)
on Da and a proposition p of the form “a(x) ∈ P”, where P ⊆ Da.
• We introduce the following two subsets of Da:

(P)π = {v ∈ P | π(v) = Π(P)} related to a proposition pπ,
(P)n = P ∪ {v ∈ P | 1 − π(v) > N(P)} related to pn

We have (P)n = {v ∈ P | 1 − π(v) = N(P)}, (P)n = (P)π, and
(P)π = (P)n. Therefore:

(P)n = (P)π and (P)π = (P)n

Example
Let us take the possibility distribution π on Dcbs = {low ,medium, high} defined by:

π(low) = 0.3, π(medium) = 1, π(high) = 0.

Given P = {medium, high}, we have (P)π = {medium} and (P)n = P.
For P′ = {low}, we have (P′)π = P′ and (P′)n = {low , high}
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Proposition reduction functions

Preliminaries : definition of two proposition reduction functions Pπ, Pn

• Let a be an attribute with a normalized possibility distribution πa(x)
on Da and a proposition p of the form “a(x) ∈ P”, where P ⊆ Da.
• We introduce the following two subsets of Da:

(P)π = {v ∈ P | π(v) = Π(P)} related to a proposition pπ,
(P)n = P ∪ {v ∈ P | 1 − π(v) > N(P)} related to pn

We have (P)n = {v ∈ P | 1 − π(v) = N(P)}, (P)n = (P)π, and
(P)π = (P)n. Therefore:

(P)n = (P)π and (P)π = (P)n

• Definitions: Pπ reduces P if π(p) ≥ η and Pn reduces P if n(p) ≥ η:

Pπ(p) =

{
pπ if π(p) ≥ η

p if π(p) < η
and Pn(p) =

{
pn if n(p) ≥ η

p if n(p) < η

• π(Pπ(p)) = π(p) and n(Pn(p)) = n(p)
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on Da and a proposition p of the form “a(x) ∈ P”, where P ⊆ Da.
• We introduce the following two subsets of Da:

(P)π = {v ∈ P | π(v) = Π(P)} related to a proposition pπ,
(P)n = P ∪ {v ∈ P | 1 − π(v) > N(P)} related to pn

We have (P)n = {v ∈ P | 1 − π(v) = N(P)}, (P)n = (P)π, and
(P)π = (P)n. Therefore:

(P)n = (P)π and (P)π = (P)n

• Definitions: Pπ reduces P if π(p) ≥ η and Pn reduces P if n(p) ≥ η:

Pπ(p) =

{
pπ if π(p) ≥ η

p if π(p) < η
and Pn(p) =

{
pn if n(p) ≥ η

p if n(p) < η

• π(Pπ(p)) = π(p) and n(Pn(p)) = n(p)
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Premise reductions functions

• Let p = p1 ∧ p2 ∧ · · · ∧ pk be a compounded premise, where pj for
j = 1, 2, · · · , k , is a proposition of the form “aj(x) ∈ Pj ” with Pj ⊆ Daj

• Rπ returns the structure responsible for π(p):

Rπ(p) =

{∧k
j=1 Pπ(pj) if π(p) ≥ η∧
pj∈{ps |π(ps)<η for s=1,··· ,k} pj if π(p) < η

• Rn returns the structure responsible for n(p):

Rn(p) =

{∧k
j=1 Pn(pj) if n(p) ≥ η∧
pj∈{ps |n(ps)<η for s=1,··· ,k} pj if n(p) < η

• π(Rπ(p)) = π(p) and n(Rn(p)) = n(p)
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Premise reductions functions

• Let p = p1 ∧ p2 ∧ · · · ∧ pk be a compounded premise, where pj for
j = 1, 2, · · · , k , is a proposition of the form “aj(x) ∈ Pj ” with Pj ⊆ Daj

• When π(p) < η and Aπ
p = {pj | π(pj) ≥ η for j = 1, · · · , k} ≠ ∅, Cπ

returns a conjunction of propositions, which is not involved in the
determination of π(p):

Cπ(p) =
∧

pj∈Aπ
p

Pπ(pj)

• When n(p) < η and An
p = {pj | n(pj) ≥ η for j = 1, · · · , k} ≠ ∅, Cn

returns a conjunction of propositions, which is not involved
in the determination of n(p):

Cn(p) =
∧

pj∈An
p

Pn(pj)

• If π(p) < η, (resp. n(p) < η), each proposition pj composing p, is either used in
Rπ(p) or in Cπ(p) (resp. Rn(p) or in Cn(p)), according to π(pj) (resp. n(pj))
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Example (continued)

• Blood sugar control system for a patient with type 1 diabetes:

activity (act) current-bloodsugar (cbs) future-bloodsugar (fbs)
R1 dinner, drink-coffee, lunch medium, high high
R2 long-sleep, sport, walking low, medium low
R3 alcohol-consumption, breakfast low, medium low, medium

Table 4: Rule base for the control of the blood sugar level.

We have s1 = 1, s2 = 0.7, s3 = 1, r1 = r2 = r3 = 0. and λ1 = 1, ρ1 = 0.3, λ2 = 0, ρ2 = 1,
λ3 = 0 and ρ3 = 1. Let us take η = 0.1.

• For the proposition “act(x) ∈ {dinner, drink-coffee, lunch}” of p1 of R1:

Pπ reduces it to “act(x) ∈ {drink-coffee}”

Pn keeps it as is

• For the premise p2:“act(x) ∈ {long-sleep, sport, walking} and cbs(x) ∈ {low,
medium}” of R2:

Rπ returns the proposition “act(x) ∈ {long-sleep, sport, walking}”

Cπ returns “cbs(x) ∈ {medium}”
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Apply reduction functions to the premise of a triplet

Reminder: Jb(x)(u) is composed of triplets (p, sem, d)

• To apply the reduction functions Rπ and Rn to the premise p of a
triplet (p, sem, d), we introduce the function SR :

SR(p, sem, d) =

{
(Rπ(p), sem, d) if sem = P
(Rn(p), sem, d) if sem = C

• Similarly, to apply Cπ and Cn, we introduce the function SC :

SC (p, sem, d) =

{
(Cπ(p), sem, π(Cπ(p))) if sem = P, d < η and Aπ

p ̸= ∅
(Cn(p), sem, n(Cn(p))) if sem = C, d < η and An

p ̸= ∅
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Justification and unexpectedness of π∗
b(x)(u)

• The justification of π∗
b(x)(u): A set of possibilistic expressions

that are sufficient to justify “b(x) is u at π∗
b(x)(u)”:

Justificationb(x)(u) = {SR(p, sem, d) | (p, sem, d) ∈ Jb(x)(u)}

• The unexpectedness of π∗
b(x)(u) : a set of possible or certain

possibilistic expressions, which may appear to be incompatible with
π∗
b(x)(u) while not being involved in its determination:

Unexpectednessb(x)(u) = {SC (p, sem, d) | (p, sem, d) ∈ Jb(x)(u)}
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Representation of Explanations

• Purpose: represent graphically explanations of possibilistic inference
decisions by conceptual graphs (Chein & Mugnier 2008)

• Representation of a possibilistic expression of an explanation
(justification, unexpectedness) by a possibilistic conceptual graph :

Definition
A possibilistic conceptual graph (PCG) is a basic conceptual graph (BG)
G = (C ,R,E , l), where C is the concept nodes set, R the relation nodes set, E is the
multi-edges set and the label function l is extended by allowing a degree and a
semantics in the label of any concept node c ∈ C :

l(c) = (type(c) : marker(c)|semc , dc),

where semc ∈ {P,C}

• The definition of a star BG i.e., a BG restricted to a relation node and
its neighbors, is naturally extended as a star PCG
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Representation of Explanations

From an explanation (justification, unexpectedness), we form an
ontology (called: a vocabulary in the conceptual graph framework) to
build m + 1 possibilistic conceptual graphs (m : number of possibilistic
expressions in an explanation) and a basic conceptual graph:

• D : PCG representing the observed phenomenon : the possibility
degree π∗

b(x)(u)

• N1, · · · ,Nm : star PCGs representing the m extracted possibilistic
expressions of an explanation

• R (root) : star BG structuring the explanation by representing the
link (isJustifiedBy or evenIf ) between D and N1, · · · ,Nm
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Representation of Explanations

The representation is a nested conceptual graph G by its associated
tree Tree(G ) where the graphs D,N1, · · · ,Nm are nested in R :

Definition
Tree(G ) = (VT ,UT , lT ) is given by:
• VT = {R,D,N1,N2, · · · ,Nm} is the set of nodes,
• UT = {(R,D), (R,N1), (R,N2), · · · , (R,Nm)} is the set of edges and
the node R is the root of Tree(G ),
• the labels of the edges are given by lT (R,D) = (R, c0,D) and
lT (R,Ni ) = (R, ci ,Ni ) for i = 1, 2, · · · ,m.
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Example (continued)

Phenomenon: Statement0

Future-bloodsugar: {high} | P, 1

Justification: Statement1

inferredFuture-bloodsugar: {high} | P, 1
Current-bloodsugar: {medium} | P, 1

Activity: {drink-coffee} | P, 1

0 1

2

Justification: Statement2

inferred Activity: {sport, walking, long-sleep} | C, 0Future-bloodsugar: {high} | P, 1
0 1

Justification: Statement3

inferred Activity: {alcohol-consumption, breakfast} | C, 0Future-bloodsugar: {high} | P, 1
10

isJustifiedBy

0
1

2

3

Figure 3: Representation of an explanation

A natural language explanation could be: “It is possible that the patient’s blood
sugar level will become high. In fact, his activity is drinking coffee and his current
blood sugar level is medium. In addition, it is assessed as not certain that he chose
sport, walking, sleeping, eating breakfast or drinking alcohol as an activity.”
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Combining Justification and Unexpectedness

In my PhD thesis, the framework is extended to represent an explanation
that is a combination of a justification and an unexpectedness:

Phenomenon: Statement0

Future-blood-sugar: {high} |P, 1

Justification: Statement1

inferred

Future-blood-sugar: {high} |P, 1

Current-blood-sugar: {medium}|P, 1

Activity: {drink-coffee}|P, 1

0
1
2

Justification: Statement2

inferred

Future-blood-sugar: {high} |P, 1

Activity: {sport, walking, long-sleep} |C, 0

0

1

Justification: Statement3

inferred

Future-blood-sugar: {high} |P, 1

Activity: {alcoholConsumption,breakfast} |C, 0

0

1

Unexpectedness: Statement4

inferred

Future-blood-sugar: {high} |P, 1

Current-blood-sugar: {low,medium} |C, 1

0

1

isJustifiedBy

0 1

2

3

evenIf

0

1

Figure 4: Representation: combination of the justification of π∗
fbs(x)(high) and

its unexpectedness
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Conclusion



Conclusion

• Canonical construction for the matrices governing the min-max
equation system of Farreny and Prade (1989)

• Formulas for π∗
b(x) and its possibility and necessity measures

• Representation of the cascade by a min-max neural network

• Necessary and sufficient condition for justifying by rule premises the
possibility degree π∗

b(x)(u)

• Two explanations of π∗
b(x)(u) : the justification and the

unexpectedness
• Representation of explanations of possibilistic inference decisions by

nested conceptual graphs, which may be used by natural language
generation systems
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