Modelling word analogies with language models

Steven Schockaert

School of Computer Science & Informatics Cardiff University, Cardiff, UK SchockaertS1@cardiff.ac.uk http://users.cs.cf.ac.uk/S.Schockaert

Word vectors and analogies

T. Mikolov. Distributed representations of words and phrases and their compositionality. NIPS 2013

Typical context words of "France": arrondissement, renaissance, ...

Typical context words of "capital": embassy, palace, ...

Typical context words of "Paris": arrondissement, embassy, palace, ...

Typical context words of France: arrondissement, renaissance, ...

Typical context words of capital cities: embassy, palace, ...

Typical context words of Paris: arrondissement, embassy, palace, ...

Abstract analogies

Query:		word:language
Candidates:	 (1) (2) (3) (4) (5) 	paint:portrait poetry:rhythm note:music tale:story week:year

Abstract analogies

Query:		word:language
Candidates:	 (1) (2) (3) (4) (5) 	paint:portrait poetry:rhythm note:music tale:story week:year

Accuracy

- ► FastText: 49.7
- GloVe: 48.9
- Word2Vec: 42.8
- Latent Relational Analysis: 56.4

Contextualised Language Models

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL-HLT 2019: 4171-4186

Contextualised Language Models

Contextualised Language Models

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL-HLT 2019: 4171-4186

Language Models as Knowledge Bases

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H. Miller: Language Models as Knowledge Bases? EMNLP/IJCNLP (1) 2019: 2463-2473

Prompt Engineering

Training examples

France → Paris Germany → Berlin Italy → Rome

 $(\mathbf{r}_{i},\mathbf{r}_{i}) \in \mathcal{I}_{i}$

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, Sameer Singh: AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. EMNLP (1) 2020: 4222-4235

BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?

Asahi Ushio, Luis Espinosa-Anke, Steven Schockaert, Jose Camacho-Collados Cardiff NLP, School of Computer Science and Informatics Cardiff University, United Kingdom

{UshioA,Espinosa-AnkeL,SchockaertS1,CamachoColladosJ}@cardiff.ac.uk

Can language models recognise analogies?

Scoring functions: perplexity

How "fluent" are the following sentences:

word is to language what paint is to portrait word is to language what poetry is to rhythm word is to language what note is to music word is to language what tale is to story word is to language what week is to year

$$exp\left(-\sum_{j=1}^{m}\log P(x_j \mid x_{j-1})\right)$$

Scoring functions: PMI-based

How much more likely is "music" as the prediction in:

word is to language what note is to [MASK]

compared to:

word is to language what [MASK] is to [MASK]

$$\log P(t_i \mid h_i, h_q, t_q) - \alpha \log P(t_i \mid h_q, t_q)$$

Scoring functions: PMI-based

Compare the probability of the joint prediction (note, music) in:

word is to language what [MASK] is to [MASK]

to the probabilities of the individual predictions of note and music, respectively in:

word is to language what [MASK] is to [MASK] word is to language what [MASK] is to [MASK]

$$\log P(t_i, h_i | h_q, t_q) - \alpha_t \log P(t_i | h_q, t_q) - \alpha_h \log P(h_i | h_q, t_q)$$

Automatically learned prompt, optimised scoring function

	Model	Score	Tuned	SAT	U2	U4	Google	BATS	Avg
		0		32.9	32.9	34.0	80.8	61.5	48.4
		s_{PPL}	\checkmark	39.8	41.7	41.0	86.8	67.9	55.4
	BERT			27.0	32.0	31.2	74.0	59.1	44.7
		s_{PMI}	\checkmark	40.4	42.5	27.8	87.0	68.1	53.2
		S _m PPL	\checkmark	41.8	44.7	41.2	88.8	67.9	56.9
-		0		35.9	41.2	44.9	80.4	63.5	53.2
<u> </u>		s_{PPL}	\checkmark	50.4	48.7	51.2	93.2	75.9	63.9
ΓM	GPT-2	SPMI		34.4	44.7	43.3	62.8	62.8	49.6
			\checkmark	51.0	37.7	50.5	91.0	79.8	62.0
		S _m PPL	\checkmark	56.7	50.9	49.5	95.2	81.2	66.7
-		SPPL		42.4	49.1	49.1	90.8	69.7	60.2
			\checkmark	53.7	57.0	55.8	93.6	80.5	68.1
	RoBERTa			35.9	42.5	44.0	60.8	60.8	48.8
		s_{PMI}	\checkmark	51.3	49.1	38.7	92.4	77.2	61.7
		S _m PPL	\checkmark	53.4	58.3	57.4	93.6	78.4	68.2
[1]	FastText	_		47.8	43.0	40.7	96.6	72.0	60.0
WE	GloVe	-		47.8	46.5	39.8	96.0	68.7	59.8
	Word2vec	-		41.8	40.4	39.6	93.2	63.8	55.8
Se	PMI	-		23.3	32.9	39.1	57.4	42.7	39.1
Base	Random	-		20.0	23.6	24.2	25.0	25.0	23.6

					bstrac nalogie		encyclopae morphologi	dic and <u>cal knowl</u> edge
	Model	Score	Tuned	SAT	U2	U4	Google BATS	Avg
		CDDI		32.9	32.9	34.0	80.8 61.5	48.4
		SPPL	\checkmark	39.8	41.7	41.0	86.8 67.9	55.4
	BERT	S D1/4		27.0	32.0	31.2	74.0 59.1	44.7
		S _{PMI}	\checkmark	40.4	42.5	27.8	87.0 68.1	53.2
		S_{mPPL}	\checkmark	41.8	44.7	41.2	88.8 67.9	56.9
		CDDI		35.9	41.2	44.9	80.4 63.5	53.2
Γ		S_{PPL}	\checkmark	50.4	48.7	51.2	93.2 75.9	63.9
ΓM	GPT-2	(D) (I		34.4	44.7	43.3	62.8 62.8	49.6
		s_{PMI}	\checkmark	51.0	37.7	50.5	91.0 79.8	62.0
		S _{mPPL}	\checkmark	56.7	50.9	49.5	95.2 81.2	66.7
		CDDI		42.4	49.1	49.1	90.8 69.7	60.2
		S_{PPL}	\checkmark	53.7	57.0	55.8	93.6 80.5	68.1
	RoBERTa	(D) (I		35.9	42.5	44.0	60.8 60.8	48.8
		s_{PMI}	\checkmark	51.3	49.1	38.7	92.4 77.2	61.7
		S_{mPPL}	\checkmark	53.4	58.3	57.4	93.6 78.4	68.2
[1]	FastText	-		47.8	43.0	40.7	96.6 72.0	60.0
WE	GloVe	-		47.8	46.5	39.8	96.0 68.7	59.8
	Word2vec	-		41.8	40.4	39.6	93.2 63.8	55.8
Base	PMI	-		23.3	32.9	39.1	57.4 42.7	39.1
\mathbf{B}_{a}	Random	-		20.0	23.6	24.2	25.0 25.0	23.6

	Model	Score	Tuned	SAT	U2	U4	Google	BATS	Avg
		0		32.9	32.9	34.0	80.8	61.5	48.4
		SPPL	\checkmark	39.8	41.7	41.0	86.8	67.9	55.4
	BERT			27.0	32.0	31.2	74.0	59.1	44.7
		S_{PMI}	\checkmark	40.4	42.5	27.8	87.0	68.1	53.2
		S _{mPPL}	\checkmark	41.8	44.7	41.2	88.8	67.9	56.9
		0		35.9	41.2	44.9	80.4	63.5	53.2
_		SPPL	\checkmark	50.4	48.7	51.2	93.2	75.9	63.9
ΓM	GPT-2	0		34.4	44.7	43.3	62.8	62.8	49.6
		S_{PMI}	\checkmark	51.0	37.7	50.5	91.0	79.8	62.0
		S _{mPPL}	\checkmark	56.7	50.9	49.5	95.2	81.2	66.7
		Coor		42.4	49.1	49.1	90.8	69.7	60.2
		S_{PPL}	\checkmark	53.7	57.0	55.8	93.6	80.5	68.1
	RoBERTa	0		35.9	42.5	44.0	60.8	60.8	48.8
		s_{PMI}	\checkmark	51.3	49.1	38.7	92.4	77.2	61.7
		S _{mPPL}	\checkmark	53.4	58.3	57.4	93.6	78.4	68.2
[1]	FastText	-		47.8	43.0	40.7	96.6	72.0	60.0
WE	GloVe	-		47.8	46.5	39.8	96.0	68.7	59.8
	Word2vec	-		41.8	40.4	39.6	93.2	63.8	55.8
Base	PMI	-		23.3	32.9	39.1	57.4	42.7	39.1
\mathbf{B}_{3}	Random	-		20.0	23.6	24.2	25.0	25.0	23.6

	Model	Score	Tuned	SAT	U2	U4	Google	BATS	Avg
		_		32.9	32.9	34.0	80.8	61.5	48.4
		SPPL	\checkmark	39.8	41.7	41.0	86.8	67.9	55.4
	BERT			27.0	32.0	31.2	74.0	59.1	44.7
		S_{PMI}	\checkmark	40.4	42.5	27.8	87.0	68.1	53.2
		S _{mPPL}	\checkmark	41.8	44.7	41.2	88.8	67.9	56.9
		0		35.9	41.2	44.9	80.4	63.5	53.2
L		SPPL	\checkmark	50.4	48.7	51.2	93.2	75.9	63.9
ΓM	GPT-2	0		34.4	44.7	43.3	62.8	62.8	49.6
		s_{PMI}	\checkmark	51.0	37.7	50.5	91.0	79.8	62.0
		S _{mPPL}	\checkmark	56.7	50.9	49.5	95.2	81.2	66.7
		Coor		42.4	49.1	49.1	90.8	69.7	60.2
		s_{PPL}	\checkmark	53.7	57.0	55.8	93.6	80.5	68.1
	RoBERTa	0		35.9	42.5	44.0	60.8	60.8	48.8
		S_{PMI}	\checkmark	51.3	49.1	38.7	92.4	77.2	61.7
		S _{mPPL}	\checkmark	53.4	58.3	57.4	93.6	78.4	68.2
[1]	FastText	-		47.8	43.0	40.7	96.6	72.0	60.0
WE	GloVe	-		47.8	46.5	39.8	96.0	68.7	59.8
·	Word2vec	-		41.8	40.4	39.6	93.2	63.8	55.8
ISC	PMI	-		23.3	32.9	39.1	57.4	42.7	39.1
Base	Random	-		20.0	23.6	24.2	25.0	25.0	23.6

	Model	Score	Tuned	Accuracy
		2		32.6
		s_{PPL}	\checkmark	40.4*
	BERT			26.8
		s_{PMI}	\checkmark	41.2*
		S_{mPPL}	\checkmark	42.8*
		0		41.4
		S_{PPL}	\checkmark	56.2*
	GPT-2			34.7
LM		s_{PMI}	\checkmark	56.8*
		S _{mPPL}	\checkmark	57.8*
-		0		49.6
	RoBERTa	s_{PPL}	\checkmark	55.8*
		SPMI		42.5
			\checkmark	54.0*
		S_{mPPL}	\checkmark	55.8*
	CDT 2	Zero-shot		53.7
	GPT-3	Few-shot	\checkmark	65.2*
-	LRA 🚺	-		56.4
	FastText	-		49.7
WE	GloVe	-		48.9
	Word2vec	-		42.8
	PMI	-		23.3
Base	Random	_		20.0

Easier for humans = easier for LMs?

Are the results robust under permutations?

Are the results robust under permutations?

Distilling Relation Embeddings from Pre-trained Language Models

Asahi Ushio and Jose Camacho-Collados and Steven Schockaert Cardiff NLP, School of Computer Science and Informatics Cardiff University, United Kingdom {UshioA, CamachoColladosJ, SchockaertS1}@cardiff.ac.uk

Learning relation vectors

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H. Miller: Language Models as Knowledge Bases? EMNLP/IJCNLP (1) 2019: 2463-2473

Subcategory	Relation name	Relation schema	Paradigms	Responses
8(e)	AGENT:GOAL	"Y is the goal of X"	pilgrim:shrine assassin:death climber:peak	patient:health runner:finish astronaut:space
5(e)	OBJECT:TYPICAL ACTION	"an X will typically Y"	glass:break soldier:fight juggernaut:crush	ice:melt lion:roar knife:stab
4(h)	DEFECTIVE	"an X is is a defect in Y "	fallacy:logic astigmatism:sight limp:walk	pimple:skin ignorance:learning tumor:body

- 66.0 "fire:hot" 59.6 "villain:evil" 53.8 "water:wet" 43.1 "tycoon:wealthy" 42.3 "snow:cold" 35.3 "candy:sweet" 32.0 "professor:intellectual" 30.0 "steel:strong" 30.0 "novice:inexperience"
- -45.1 "prince:charming"
- -46.0 "heat:fire"
- -52.0 "lipstick:red"
- -56.9 "fizzy:pop"
- -60.0 "man:tall"
- -72.5 "flimsy:paper"
- -72.5 "tall:man"
- -76.5 "intellectual:professor"

- 56.0 "loss:grief" 48.0 "injury:pain" 44.0 "disease:sickness" 42.0 "explosion:damage" 41.2 "accident:damage" 34.5 "germs:sickness" 30.0 "bath:cleanliness" 26.0 "exercise:fitness" 22.0 "tragedy:tears"
- -22.0 "digging:hole"
- -24.0 "sow:germinate"
- -28.0 "yelling:anger"
- -42.0 "headache:stress"
- -48.0 "learning:study"
- -62.0 "response:stimulus"
- -66.0 "boredom:repetition"
- -74.0 "sweat:run"

should be similar

- 66.0 "fire:hot" 59.6 "villain:evil"
- 53.8 "water:wet"
- 43.1 "tycoon:wealthy"
- 42.3 "snow:cold"
- 35.3 "candy:sweet"
- 32.0 "professor:intellectual"
- 30.0 "steel:strong"
- 30.0 "novice:inexperience"
- •••
- -45.1 "prince:charming"
- -46.0 "heat:fire"
- -52.0 "lipstick:red"
- -56.9 "fizzy:pop"
- -60.0 "man:tall"
- -72.5 "flimsy:paper"
- -72.5 "tall:man"
- -76.5 "intellectual:professor"

- 56.0 "loss:grief"
 48.0 "injury:pain"
 44.0 "disease:sickness"
 42.0 "explosion:damage"
 41.2 "accident:damage"
 34.5 "germs:sickness"
 30.0 "bath:cleanliness"
 26.0 "exercise:fitness"
- 22.0 "tragedy:tears"
- -22.0 "digging:hole"
- -24.0 "sow:germinate"
- -28.0 "yelling:anger"
- -42.0 "headache:stress"
- -48.0 "learning:study"
- -62.0 "response:stimulus"
- -66.0 "boredom:repetition"
- -74.0 "sweat:run"

should be dissimilar

66.0 "fire:hot"

- 59.6 "villain:evil" 53.8 "water:wet"
- 43.1 "tycoon:wealthy"
- 42.3 "snow:cold"
- 35.3 "candy:sweet"
- 32.0 "professor:intellectual"
- 30.0 "steel:strong"
- 30.0 "novice:inexperience"
- -45.1 "prince:charming"
- -46.0 "heat:fire"
- -52.0 "lipstick:red"
- -56.9 "fizzy:pop"
- -60.0 "man:tall"
- -72.5 "flimsy:paper"
- -72.5 "tall:man"
- -76.5 "intellectual:professor"

- 56.0 "loss:grief"
 48.0 "injury:pain"
 44.0 "disease:sickness"
 42.0 "explosion:damage"
 41.2 "accident:damage"
 34.5 "germs:sickness"
 30.0 "bath:cleanliness"
 26.0 "exercise:fitness"
- 22.0 "tragedy:tears"
- -22.0 "digging:hole"
- -24.0 "sow:germinate"
- -28.0 "yelling:anger"
- -42.0 "headache:stress"
- -48.0 "learning:study"
- -62.0 "response:stimulus"
- -66.0 "boredom:repetition"
- -74.0 "sweat:run"

should be dissimilar

66.0 "fire:hot"

- 59.6 "villain:evil"
- 53.8 "water:wet"
- 43.1 "tycoon:wealthy"
- 42.3 "snow:cold"
- 35.3 "candy:sweet"
- 32.0 "professor:intellectual"
- 30.0 "steel:strong"
- 30.0 "novice:inexperience"

•••

- -45.1 "prince:charming"
- -46.0 "heat:fire"
- -52.0 "lipstick:red"
- -56.9 "fizzy:pop"
- -60.0 "man:tall"
- -72.5 "flimsy:paper"
- -72.5 "tall:man"
- -76.5 "intellectual:professor"

56.0 "loss:grief"

- 48.0 "injury:pain"
- 44.0 "disease:sickness"
- 42.0 "explosion:damage"
- 41.2 "accident:damage"
- 34.5 "germs:sickness"
- 30.0 "bath:cleanliness"
- 26.0 "exercise:fitness"
- 22.0 "tragedy:tears"
- -22.0 "digging:hole"
- -24.0 "sow:germinate"
- -28.0 "yelling:anger"
- -42.0 "headache:stress"
- -48.0 "learning:study"
- -62.0 "response:stimulus"
- -66.0 "boredom:repetition"
- -74.0 "sweat:run"

Training loss

Triplet loss

$$L_t = \max\left(0, \|\boldsymbol{x}_a - \boldsymbol{x}_p\| - \|\boldsymbol{x}_a - \boldsymbol{x}_n\| + \varepsilon\right)$$

relation vector for some word pair a relation vector for a word pair p, similar to a relation vector for a word pair n, not similar to a

Training loss

Triplet loss

$$L_t = \max\left(0, \|\boldsymbol{x}_a - \boldsymbol{x}_p\| - \|\boldsymbol{x}_a - \boldsymbol{x}_n\| + \varepsilon\right)$$

Classification loss

$$L_c = -\log(g(\boldsymbol{x}_a, \boldsymbol{x}_p)) - \log(1 - g(\boldsymbol{x}_a, \boldsymbol{x}_n))$$
$$g(\boldsymbol{u}, \boldsymbol{v}) = \operatorname{sigmoid}(W \cdot [\boldsymbol{u} \oplus \boldsymbol{v} \oplus |\boldsymbol{v} - \boldsymbol{u}|]^T)$$

Model	SAT†	SAT	U2	U4	Google	BATS
Random	20.0	20.0	23.6	24.2	25.0	25.0
PMI	23.3	23.1	32.9	39.1	57.4	42.7
LRA	56.4	-	-	-	-	-
SuperSim	54.8	-	-	-	-	-
GPT-3 (zero)	53.7	-	-	-	-	-
GPT-3 (few)	65.2*	-	-	-	-	-
RELATIVE	24.9	24.6	32.5	27.1	62.0	39.0
pair2vec	33.7	34.1	25.4	28.2	66.6	53.8
GloVe	48.9	47.8	46.5	39.8	96.0	68.7
FastText	49.7	47.8	43.0	40.7	<u>96.6</u>	72.0
Analogical Pro	oportion	Score				
· GPT-2	41.4	35.9	41.2	44.9	80.4	63.5
· BERT	32.6	32.9	32.9	34.0	80.8	61.5
· RoBERTa	49.6	42.4	49.1	49.1	90.8	69.7
Analogical Pro	oportion	Score ((tuned)			
· GPT-2	57.8*	56.7*	50.9*	49.5*	95.2*	<u>81.2</u> *
· BERT	42.8*	41.8*	44.7*	41.2*	88.8*	67.9*
· RoBERTa	55.8*	53.4*	58.3*	57.4*	93.6*	78.4*
RelBERT						
· Manual	<u>69.5</u>	<u>70.6</u>	<u>66.2</u>	<u>65.3</u>	92.4	78.8
· AutoPrompt	61.0	62.3	61.4	63.0	88.2	74.6
· P-tuning	54.0	55.5	58.3	55.8	83.4	72.1

	Indal	BLI	ESS	CogA	LexV	EVAL	ution	K&I	H+N	ROC)Т09
1	Model		micro	macro	micro	macro	micro	macro	micro	macro	micro
	cat	92.9	93.3	42.8	73.5	56.9	58.3	88.8	94.9	86.3	86.5
	cat+dot	93.1	93.7	51.9	79.2	55.9	57.3	89.6	95.1	88.8	89.0
	cat+dot+pair	91.8	92.6	56.4	81.1	58.1	59.6	89.4	95.7	89.2	89.4
GloVe	cat+dot+rel	91.1	92.0	53.2	79.2	58.4	58.6	89.3	94.9	89.3	89.4
UIUVE	diff	91.0	91.5	39.2	70.8	55.6	56.9	87.0	94.4	85.9	86.3
	diff+dot	92.3	92.9	50.6	78.5	56.5	57.9	88.3	94.8	88.6	88.9
	diff+dot+pair	91.3	92.2	55.5	80.2	56.0	57.4	88.0	95.5	89.1	89.4
	diff+dot+rel	91.1	91.8	52.8	78.6	56.9	57.9	87.4	94.6	87.7	88.1
	cat	92.4	92.9	40.7	72.4	56.4	57.9	88.1	93.8	85.7	85.5
	cat+dot	92.7	93.2	48.5	77.4	56.7	57.8	89.1	94.0	88.2	88.5
	cat+dot+pair	90.9	91.5	53.0	79.3	56.1	58.2	88.3	94.3	87.7	87.8
FastText	cat+dot+rel	91.4	91.9	50.6	76.8	57.9	59.1	86.9	93.5	87.1	87.4
Fastlext	diff	90.7	91.2	39.7	70.2	53.2	55.5	85.8	93.3	85.5	86.0
	diff+dot	92.3	92.9	49.1	77.8	55.2	57.4	86.5	93.6	88.5	88.9
	diff+dot+pair	90.0	90.8	53.9	79.0	55.8	57.8	86.6	94.2	87.7	88.1
	diff+dot+rel	90.6	91.3	53.6	78.2	57.1	58.0	86.3	93.4	86.9	87.4
	Manual	91.7	92.1	71.2	87.0	68.4	69.6	88.0	96.2	90.9	91.0
RelBERT	AutoPrompt	91.9	92.4	68.5	85.1	69.5	70.5	91.3	97.1	90.0	90.3
	P-tuning	91.3	91.8	67.8	84.9	69.1	70.2	88.5	96.3	89.8	89.9
S = t A	LexNET	-	89.3	-	_	_	60.0	_	98.5		81.3
SotA	SphereRE	-	93.8	-	-	-	62.0	-	99.0	-	86.1

	BLESS	CogALex	EVAL	K&H+N	ROOT09
rand	93.7 (+0.3)	94.3 (-0.2)	-	97.9 (+0.2)	91.2(-0.1)
mero	89.8 (+1.4)	72.9 (+2.7)	69.2 (+1.9)	74.5 (+5.4)	-
event	86.5 (-0.3)	-	-	-	-
hyp	94.1 (+0.8)	60.9(-0.7)	61.7 (-1.5)	93.5 (+5.0)	83.0(-0.4)
cohyp	96.4 (+0.3)	-	-	97.8 (+1.2)	97.4 (-0.5)
attr	92.6 (+0.3)	-	84.7 (+1.6)	-	-
poss	-	-	67.1 (-0.2)	-	-
ant	-	76.8(-2.6)	81.3 (-0.9)	-	-
syn	-	49.9(-0.6)	53.6 (+2.7)	-	-
macro	92.2 (+0.5)	71.0(-0.2)	69.3 (+0.9)	90.9 (+2.9)	90.5 (-0.4)
micro	92.5 (+0.4)	86.9(-0.1)	70.2 (+0.6)	97.2 (+1.0)	90.7 (-0.3)

Model was trained without any hypernymy training data

Category	Target	Nearest Neighbors RelBERT
Commonsense	restaurant:waitress car:garage ice:melt	baker:bread, brewer:beer, bartender:cocktail, winemaker:wine, bartender:drink, baker:cake restaurant:waiter, diner:waitress, bar:bartender, hospital:nurse, courthouse:clerk, office:clerk car:pit, plane:hangar, auto:garage, baby:crib, yacht:harbour, aircraft:hangar snow:melt, glacier:melt, ice:drift, crust:melt, polar ice:melt, ice:thaw squid:swim, salmon:swim, shark:swim, fish:swim, horse:run, frog:leap orchid:fragrant, cluster:fragrant, jewel:precious, jewel:valuable, soil:permeable, vegetation:abundant coconut:oil, goat:milk, grape:juice, palm:oil, olive:oil, camel:milk bottle:plastic, bag:leather, container:plastic, box:plastic, jug:glass, bottle:glass chicken:chick, pig:piglet, cat:kitten, ox:calf, butterfly:larvae, bear:cub
Gender	man:woman	men:women, male:female, father:mother, boy:girl, hero:heroine, king:queen
Antonymy	cooked:raw normal:abnormal	raw:cooked, regulated:unregulated, sober:drunk, loaded:unloaded, armed:unarmed, published:unpublished ordinary:unusual, usual:unusual, acceptable:unacceptable, stable:unstable, rational:irrational, legal:illegal
Meronymy	helicopter:rotor bat:wing beer:alcohol oxygen:atmosphere	helicopter:rotor blades, helicopter:wing, bicycle:wheel, motorcycle:wheel, airplane:engine, plane:engine butterfly:wing, eagle:wing, angel:wing, cat:paw, lion:wings, fly:wing wine:alcohol, cider:alcohol, soda:sugar, beer:liquor, beer:malt, lager:alcoho helium:atmosphere, hydrogen:atmosphere, nitrogen:atmosphere, methane:atmosphere, carbon:atmosphere
Hypernymy	chihuahua:dog pelican:bird tennis:sport	dachshund:dog, poodle:dog, terrier:dog, chinchilla:rodent, macaque:monkey, dalmatian:dog toucan:bird, puffin:bird, egret:bird, peacock:bird, grouse:bird, pigeon:bird hockey:sport, soccer:sport, volleyball:sport, cricket:sport, golf:sport, football:sport
Morphology	dog:dogs tall:tallest spy:espionage	cat:cats, horse:horses, pig:pigs, rat:rats, wolf:wolves, monkey:monkeys strong:strongest, short:shortest, smart:smartest, weak:weakest, big:biggest, small:smallest pirate:piracy, robber:robbery, lobbyist:lobbying, scout:scouting, terrorist:terrorism, witch:witchcraft

Category	Target	Nearest Neighbors RelBERT
Commonsense	car:garage ice:melt	baker:bread, brewer:beer, bartender:cocktail, winemaker:wine, bartender:drink, baker:cake restaurant:waiter, diner:waitress, bar:bartender, hospital:nurse, courthouse:clerk, office:clerk car:pit, plane:hangar, auto:garage, baby:crib, yacht:harbour, aircraft:hangar snow:melt, glacier:melt, ice:drift, crust:melt, polar ice:melt, ice:thaw squid:swim, salmon:swim, shark:swim, fish:swim, horse:run, frog:leap orchid:fragrant, cluster:fragrant, jewel:precious, jewel:valuable, soil:permeable, vegetation:abundant coconut:oil, goat:milk, grape:juice, palm:oil, olive:oil, camel:milk bottle:plastic, bag:leather, container:plastic, box:plastic, jug:glass, bottle:glass chicken:chick, pig:piglet, cat:kitten, ox:calf, butterfly:larvae, bear:cub
Gender	man:woman	men:women, male:female, father:mother, boy:girl, hero:heroine, king:queen
Antonymy	cooked:raw normal:abnormal	raw:cooked, regulated:unregulated, sober:drunk, loaded:unloaded, armed:unarmed, published:unpublished ordinary:unusual, usual:unusual, acceptable:unacceptable, stable:unstable, rational:irrational, legal:illegal
Meronymy	helicopter:rotor bat:wing beer:alcohol oxygen:atmosphere	helicopter:rotor blades, helicopter:wing, bicycle:wheel, motorcycle:wheel, airplane:engine, plane:engine butterfly:wing, eagle:wing, angel:wing, cat:paw, lion:wings, fly:wing wine:alcohol, cider:alcohol, soda:sugar, beer:liquor, beer:malt, lager:alcoho helium:atmosphere, hydrogen:atmosphere, nitrogen:atmosphere, methane:atmosphere, carbon:atmosphere
Hypernymy	chihuahua:dog pelican:bird tennis:sport	dachshund:dog, poodle:dog, terrier:dog, chinchilla:rodent, macaque:monkey, dalmatian:dog toucan:bird, puffin:bird, egret:bird, peacock:bird, grouse:bird, pigeon:bird hockey:sport, soccer:sport, volleyball:sport, cricket:sport, golf:sport, football:sport
Morphology	dog:dogs tall:tallest spy:espionage	cat:cats, horse:horses, pig:pigs, rat:rats, wolf:wolves, monkey:monkeys strong:strongest, short:shortest, smart:smartest, weak:weakest, big:biggest, small:smallest pirate:piracy, robber:robbery, lobbyist:lobbying, scout:scouting, terrorist:terrorism, witch:witchcraft

Category	Target	Nearest Neighbors RelBERT
Commonsense	barista:coffee restaurant:waitress car:garage ice:melt dolphin:swim flower:fragrant coconut:milk bag:plastic duck:duckling	baker:bread, brewer:beer, bartender:cocktail, winemaker:wine, bartender:drink, baker:cake restaurant:waiter, diner:waitress, bar:bartender, hospital:nurse, courthouse:clerk, office:clerk car:pit, plane:hangar, auto:garage, baby:crib, yacht:harbour, aircraft:hangar snow:melt, glacier:melt, ice:drift, crust:melt, polar ice:melt, ice:thaw squid:swim, salmon:swim, shark:swim, fish:swim, horse:run, frog:leap orchid:fragrant, cluster:fragrant, jewel:precious, jewel:valuable, soil:permeable, vegetation:abundant coconut:oil, goat:milk, grape:juice, palm:oil, olive:oil, camel:milk bottle:plastic, bag:leather, container:plastic, box:plastic, jug:glass, bottle:glass chicken:chick, pig:piglet, cat:kitten, ox:calf, butterfly:larvae, bear:cub
Gender	man:woman	men:women, male:female, father:mother, boy:girl, hero:heroine, king:queen
Antonymy	cooked:raw normal:abnormal	raw:cooked, regulated:unregulated, sober:drunk, loaded:unloaded, armed:unarmed, published:unpublished ordinary:unusual, usual:unusual, acceptable:unacceptable, stable:unstable, rational:irrational, legal:illegal
Meronymy	helicopter:rotor bat:wing beer:alcohol oxygen:atmosphere	helicopter:rotor blades, helicopter:wing, bicycle:wheel, motorcycle:wheel, airplane:engine, plane:engine butterfly:wing, eagle:wing, angel:wing, cat:paw, lion:wings, fly:wing wine:alcohol, cider:alcohol, soda:sugar, beer:liquor, beer:malt, lager:alcoho helium:atmosphere, hydrogen:atmosphere, nitrogen:atmosphere, methane:atmosphere, carbon:atmosphere
Hypernymy	chihuahua:dog pelican:bird tennis:sport	dachshund:dog, poodle:dog, terrier:dog, chinchilla:rodent, macaque:monkey, dalmatian:dog toucan:bird, puffin:bird, egret:bird, peacock:bird, grouse:bird, pigeon:bird hockey:sport, soccer:sport, volleyball:sport, cricket:sport, golf:sport, football:sport
Morphology	dog:dogs tall:tallest spy:espionage	cat:cats, horse:horses, pig:pigs, rat:rats, wolf:wolves, monkey:monkeys strong:strongest, short:shortest, smart:smartest, weak:weakest, big:biggest, small:smallest pirate:piracy, robber:robbery, lobbyist:lobbying, scout:scouting, terrorist:terrorism, witch:witchcraft

Category	Target	Nearest Neighbors RelBERT
Commonsense	barista:coffee restaurant:waitress car:garage ice:melt dolphin:swim flower:fragrant coconut:milk bag:plastic duck:duckling	baker:bread, brewer:beer, bartender:cocktail, winemaker:wine, bartender:drink, baker:cake restaurant:waiter, diner:waitress, bar:bartender, hospital:nurse, courthouse:clerk, office:clerk car:pit, plane:hangar, auto:garage, baby:crib, yacht:harbour, aircraft:hangar snow:melt, glacier:melt, ice:drift, crust:melt, polar ice:melt, ice:thaw squid:swim, salmon:swim, shark:swim, fish:swim, horse:run, frog:leap orchid:fragrant, cluster:fragrant, jewel:precious, jewel:valuable, soil:permeable, vegetation:abundant coconut:oil, goat:milk, grape:juice, palm:oil, olive:oil, camel:milk bottle:plastic, bag:leather, container:plastic, box:plastic, jug:glass, bottle:glass chicken:chick, pig:piglet, cat:kitten, ox:calf, butterfly:larvae, bear:cub
Gender	man:woman	men:women, male:female, father:mother, boy:girl, hero:heroine, king:queen
Antonymy	cooked:raw normal:abnormal	raw:cooked, regulated:unregulated, sober:drunk, loaded:unloaded, armed:unarmed, published:unpublished ordinary:unusual, usual:unusual, acceptable:unacceptable, stable:unstable, rational:irrational, legal:illegal
Meronymy	helicopter:rotor bat:wing beer:alcohol oxygen:atmosphere	helicopter:rotor blades, helicopter:wing, bicycle:wheel, motorcycle:wheel, airplane:engine, plane:engine butterfly:wing, eagle:wing, angel:wing, cat:paw, lion:wings, fly:wing wine:alcohol, cider:alcohol, soda:sugar, beer:liquor, beer:malt, lager:alcoho helium:atmosphere, hydrogen:atmosphere, nitrogen:atmosphere, methane:atmosphere, carbon:atmosphere
Hypernymy	chihuahua:dog pelican:bird tennis:sport	dachshund:dog, poodle:dog, terrier:dog, chinchilla:rodent, macaque:monkey, dalmatian:dog toucan:bird, puffin:bird, egret:bird, peacock:bird, grouse:bird, pigeon:bird hockey:sport, soccer:sport, volleyball:sport, cricket:sport, golf:sport, football:sport
Morphology	dog:dogs tall:tallest spy:espionage	cat:cats, horse:horses, pig:pigs, rat:rats, wolf:wolves, monkey:monkeys strong:strongest, short:shortest, smart:smartest, weak:weakest, big:biggest, small:smallest pirate:piracy, robber:robbery, lobbyist:lobbying, scout:scouting, terrorist:terrorism, witch:witchcraft