
Modelling word analogies with
language models

School of Computer Science & Informatics

Cardiff University, Cardiff, UK

SchockaertS1@cardiff.ac.uk

http://users.cs.cf.ac.uk/S.Schockaert

Steven Schockaert

mailto:Steven.Schockaert@UGent.be
mailto:SchockaertS1@cardiff.ac.uk
http://users.cs.cf.ac.uk/S.Schockaert

Word vectors and analogies

T. Mikolov. Distributed representations of words and phrases and their compositionality. NIPS 2013

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Country and Capital Vectors Projected by PCA
China

Japan

France

Russia

Germany

Italy

Spain
Greece

Turkey

Beijing

Paris

Tokyo

Poland

Moscow

Portugal

Berlin

Rome
Athens

Madrid

Ankara

Warsaw

Lisbon

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

which is used to replace every logP (wO|wI) term in the Skip-gram objective. Thus the task is to
distinguish the target word wO from draws from the noise distribution Pn(w) using logistic regres-
sion, where there are k negative samples for each data sample. Our experiments indicate that values
of k in the range 5–20 are useful for small training datasets, while for large datasets the k can be as
small as 2–5. The main difference between the Negative sampling and NCE is that NCE needs both
samples and the numerical probabilities of the noise distribution, while Negative sampling uses only
samples. And while NCE approximately maximizes the log probability of the softmax, this property
is not important for our application.

Both NCE and NEG have the noise distributionPn(w) as a free parameter. We investigated a number
of choices for Pn(w) and found that the unigram distribution U(w) raised to the 3/4rd power (i.e.,
U(w)3/4/Z) outperformed significantly the unigram and the uniform distributions, for both NCE
and NEG on every task we tried including language modeling (not reported here).

2.3 Subsampling of Frequent Words

In very large corpora, the most frequent words can easily occur hundreds of millions of times (e.g.,
“in”, “the”, and “a”). Such words usually provide less information value than the rare words. For
example, while the Skip-gram model benefits from observing the co-occurrences of “France” and
“Paris”, it benefits much less from observing the frequent co-occurrences of “France” and “the”, as
nearly every word co-occurs frequently within a sentence with “the”. This idea can also be applied
in the opposite direction; the vector representations of frequent words do not change significantly
after training on several million examples.

To counter the imbalance between the rare and frequent words, we used a simple subsampling ap-
proach: each word wi in the training set is discarded with probability computed by the formula

P (wi) = 1−

√

t

f(wi)
(5)

4

Carl Allen, Timothy M. Hospedales: Analogies Explained: Towards Understanding Word Embeddings. ICML 2019: 223-231

Typical context words of “France”: arrondissement, renaissance, …

Typical context words of “capital”: embassy, palace, …

Typical context words of “Paris”: arrondissement, embassy, palace, …

Why do vector differences model analogies?

Why do vector differences model analogies?

Carl Allen, Timothy M. Hospedales: Analogies Explained: Towards Understanding Word Embeddings. ICML 2019: 223-231

Typical context words of France: arrondissement, renaissance, …

Typical context words of capital cities: embassy, palace, …

Typical context words of Paris: arrondissement, embassy, palace, …

+

=

Why do vector differences model analogies?

Carl Allen, Timothy M. Hospedales: Analogies Explained: Towards Understanding Word Embeddings. ICML 2019: 223-231

paris

capital
France

one column per word
values represent PMI

Why do vector differences model analogies?

Carl Allen, Timothy M. Hospedales: Analogies Explained: Towards Understanding Word Embeddings. ICML 2019: 223-231

paris

capital
France

one column per word
values represent PMI

columns correspond to
latent factors

word embedding

Peter D. Turney: Measuring Semantic Similarity by Latent Relational Analysis. IJCAI 2005: 1136-1141

BERT is to NLP what AlexNet is to CV:
Can Pre-Trained Language Models Identify Analogies?

Asahi Ushio, Luis Espinosa-Anke, Steven Schockaert, Jose Camacho-Collados
Cardiff NLP, School of Computer Science and Informatics

Cardiff University, United Kingdom
{UshioA,Espinosa-AnkeL,SchockaertS1,CamachoColladosJ}@cardiff.ac.uk

Abstract

Analogies play a central role in human com-
monsense reasoning. The ability to recognize
analogies such as “eye is to seeing what ear is
to hearing”, sometimes referred to as analogi-
cal proportions, shape how we structure knowl-
edge and understand language. Surprisingly,
however, the task of identifying such analogies
has not yet received much attention in the lan-
guage model era. In this paper, we analyze
the capabilities of transformer-based language
models on this unsupervised task, using bench-
marks obtained from educational settings, as
well as more commonly used datasets. We find
that off-the-shelf language models can identify
analogies to a certain extent, but struggle with
abstract and complex relations, and results are
highly sensitive to model architecture and hy-
perparameters. Overall the best results were
obtained with GPT-2 and RoBERTa, while
configurations using BERT were not able to
outperform word embedding models. Our re-
sults raise important questions for future work
about how, and to what extent, pre-trained
language models capture knowledge about ab-
stract semantic relations.1

1 Introduction

One of the most widely discussed properties of
word embeddings has been their surprising abil-
ity to model certain types of relational similari-
ties in terms of word vector differences (Mikolov

While the title is probably self-explanatory, this is a small
note explaining it. BERT is to NLP what AlexNet is to CV is
making an analogy on what the BERT and AlexNet models
represented for Natural Language Processing (NLP) and Com-
puter Vision (CV), respectively. They both brought a paradigm
shift in how research was undertaken in their corresponding
disciplines and this is what the analogy refers to.

1Source code and data to reproduce our ex-
perimental results are available in the following
repository: https://github.com/asahi417/
analogy-language-model

Query: word:language

Candidates: (1) paint:portrait
(2) poetry:rhythm
(3) note:music
(4) tale:story
(5) week:year

Table 1: An example analogy task from the SAT
dataset. The third candidate is the answer to the query.

et al., 2013a; Vylomova et al., 2016; Allen and
Hospedales, 2019; Ethayarajh et al., 2019). The
underlying assumption is that when “a is to b what
c is to d” the word vector differences b � a and
d� c are expected to be similar, where we write x
for the embedding of a word x. While this assump-
tion holds for some types of syntactic relations,
for semantic relations this holds to a much more
limited degree than was suggested in early work
(Linzen, 2016; Schluter, 2018). Moreover, the most
commonly used benchmarks have focused on spe-
cific and well-defined semantic relations such as
“capital of”, rather than the more abstract notion of
relational similarity that is often needed for solving
the kind of psychometric analogy problems that
can be found in IQ tests and educational settings.
An example of such a problem is shown in Table 1.

Given the central role of analogy in human cog-
nition, it is nonetheless important to understand the
extent to which NLP models are able to solve these
more abstract analogy problems. Besides its value
as an intrinsic benchmark for lexical semantics,
the ability to recognize analogies is indeed impor-
tant in the contexts of human creativity (Holyoak
et al., 1996), innovation (Hope et al., 2017), com-
putational creativity (Goel, 2019) and education
(Pardos and Nam, 2020). Analogies are also a
prerequisite to build AI systems for the legal do-
main (Ashley, 1988; Walton, 2010) and are used in
machine learning (Miclet et al., 2008; Hug et al.,

Abstract analogies

Abstract analogies

Peter D. Turney: Measuring Semantic Similarity by Latent Relational Analysis. IJCAI 2005: 1136-1141

BERT is to NLP what AlexNet is to CV:
Can Pre-Trained Language Models Identify Analogies?

Asahi Ushio, Luis Espinosa-Anke, Steven Schockaert, Jose Camacho-Collados
Cardiff NLP, School of Computer Science and Informatics

Cardiff University, United Kingdom
{UshioA,Espinosa-AnkeL,SchockaertS1,CamachoColladosJ}@cardiff.ac.uk

Abstract

Analogies play a central role in human com-
monsense reasoning. The ability to recognize
analogies such as “eye is to seeing what ear is
to hearing”, sometimes referred to as analogi-
cal proportions, shape how we structure knowl-
edge and understand language. Surprisingly,
however, the task of identifying such analogies
has not yet received much attention in the lan-
guage model era. In this paper, we analyze
the capabilities of transformer-based language
models on this unsupervised task, using bench-
marks obtained from educational settings, as
well as more commonly used datasets. We find
that off-the-shelf language models can identify
analogies to a certain extent, but struggle with
abstract and complex relations, and results are
highly sensitive to model architecture and hy-
perparameters. Overall the best results were
obtained with GPT-2 and RoBERTa, while
configurations using BERT were not able to
outperform word embedding models. Our re-
sults raise important questions for future work
about how, and to what extent, pre-trained
language models capture knowledge about ab-
stract semantic relations.1

1 Introduction

One of the most widely discussed properties of
word embeddings has been their surprising abil-
ity to model certain types of relational similari-
ties in terms of word vector differences (Mikolov

While the title is probably self-explanatory, this is a small
note explaining it. BERT is to NLP what AlexNet is to CV is
making an analogy on what the BERT and AlexNet models
represented for Natural Language Processing (NLP) and Com-
puter Vision (CV), respectively. They both brought a paradigm
shift in how research was undertaken in their corresponding
disciplines and this is what the analogy refers to.

1Source code and data to reproduce our ex-
perimental results are available in the following
repository: https://github.com/asahi417/
analogy-language-model

Query: word:language

Candidates: (1) paint:portrait
(2) poetry:rhythm
(3) note:music
(4) tale:story
(5) week:year

Table 1: An example analogy task from the SAT
dataset. The third candidate is the answer to the query.

et al., 2013a; Vylomova et al., 2016; Allen and
Hospedales, 2019; Ethayarajh et al., 2019). The
underlying assumption is that when “a is to b what
c is to d” the word vector differences b � a and
d� c are expected to be similar, where we write x
for the embedding of a word x. While this assump-
tion holds for some types of syntactic relations,
for semantic relations this holds to a much more
limited degree than was suggested in early work
(Linzen, 2016; Schluter, 2018). Moreover, the most
commonly used benchmarks have focused on spe-
cific and well-defined semantic relations such as
“capital of”, rather than the more abstract notion of
relational similarity that is often needed for solving
the kind of psychometric analogy problems that
can be found in IQ tests and educational settings.
An example of such a problem is shown in Table 1.

Given the central role of analogy in human cog-
nition, it is nonetheless important to understand the
extent to which NLP models are able to solve these
more abstract analogy problems. Besides its value
as an intrinsic benchmark for lexical semantics,
the ability to recognize analogies is indeed impor-
tant in the contexts of human creativity (Holyoak
et al., 1996), innovation (Hope et al., 2017), com-
putational creativity (Goel, 2019) and education
(Pardos and Nam, 2020). Analogies are also a
prerequisite to build AI systems for the legal do-
main (Ashley, 1988; Walton, 2010) and are used in
machine learning (Miclet et al., 2008; Hug et al.,

Accuracy
‣ FastText: 49.7
‣ GloVe: 48.9
‣ Word2Vec: 42.8
‣ Latent Relational Analysis: 56.4

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova: BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. NAACL-HLT 2019: 4171-4186

A

em
be

dd
in

g
de

ep
 tr

an
sf

or
m

er

ne
tw

or
k

co
nt

ex
tu

al
is

ed

w
or

d
ve

ct
or

s

mouse took a stroll through the deep dark wood

Contextualised Language Models

A

em
be

dd
in

g
de

ep
 tr

an
sf

or
m

er

ne
tw

or
k

co
nt

ex
tu

al
is

ed

w
or

d
ve

ct
or

s

mouse took a through the deep dark wood

Task-specific prediction

stroll

Contextualised Language Models

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova: BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. NAACL-HLT 2019: 4171-4186

A

em
be

dd
in

g
de

ep
 tr

an
sf

or
m

er

ne
tw

or
k

co
nt

ex
tu

al
is

ed

w
or

d
ve

ct
or

s

mouse took a [MASK]through the deep dark wood

Contextualised Language Models

The capital of France is [MASK]

pre-trained language model

Paris

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H.
Miller: Language Models as Knowledge Bases? EMNLP/IJCNLP (1) 2019: 2463-2473

manually constructed
prompt

Language Models as Knowledge Bases

* * * France * [MASK]

pre-trained language model

Paris

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, Sameer Singh: AutoPrompt: Eliciting
Knowledge from Language Models with Automatically Generated Prompts. EMNLP (1) 2020: 4222-4235

Training examples

France → Paris
Germany → Berlin
Italy → Rome
…

Prompt Engineering

BERT is to NLP what AlexNet is to CV:
Can Pre-Trained Language Models Identify Analogies?

Asahi Ushio, Luis Espinosa-Anke, Steven Schockaert, Jose Camacho-Collados
Cardiff NLP, School of Computer Science and Informatics

Cardiff University, United Kingdom
{UshioA,Espinosa-AnkeL,SchockaertS1,CamachoColladosJ}@cardiff.ac.uk

Abstract

Analogies play a central role in human com-
monsense reasoning. The ability to recognize
analogies such as “eye is to seeing what ear is
to hearing”, sometimes referred to as analogi-
cal proportions, shape how we structure knowl-
edge and understand language. Surprisingly,
however, the task of identifying such analogies
has not yet received much attention in the lan-
guage model era. In this paper, we analyze
the capabilities of transformer-based language
models on this unsupervised task, using bench-
marks obtained from educational settings, as
well as more commonly used datasets. We find
that off-the-shelf language models can identify
analogies to a certain extent, but struggle with
abstract and complex relations, and results are
highly sensitive to model architecture and hy-
perparameters. Overall the best results were
obtained with GPT-2 and RoBERTa, while
configurations using BERT were not able to
outperform word embedding models. Our re-
sults raise important questions for future work
about how, and to what extent, pre-trained
language models capture knowledge about ab-
stract semantic relations.1

1 Introduction

One of the most widely discussed properties of
word embeddings has been their surprising abil-
ity to model certain types of relational similari-
ties in terms of word vector differences (Mikolov

While the title is probably self-explanatory, this is a small
note explaining it. BERT is to NLP what AlexNet is to CV is
making an analogy on what the BERT and AlexNet models
represented for Natural Language Processing (NLP) and Com-
puter Vision (CV), respectively. They both brought a paradigm
shift in how research was undertaken in their corresponding
disciplines and this is what the analogy refers to.

1Source code and data to reproduce our ex-
perimental results are available in the following
repository: https://github.com/asahi417/
analogy-language-model

Query: word:language

Candidates: (1) paint:portrait
(2) poetry:rhythm
(3) note:music
(4) tale:story
(5) week:year

Table 1: An example analogy task from the SAT
dataset. The third candidate is the answer to the query.

et al., 2013a; Vylomova et al., 2016; Allen and
Hospedales, 2019; Ethayarajh et al., 2019). The
underlying assumption is that when “a is to b what
c is to d” the word vector differences b � a and
d� c are expected to be similar, where we write x
for the embedding of a word x. While this assump-
tion holds for some types of syntactic relations,
for semantic relations this holds to a much more
limited degree than was suggested in early work
(Linzen, 2016; Schluter, 2018). Moreover, the most
commonly used benchmarks have focused on spe-
cific and well-defined semantic relations such as
“capital of”, rather than the more abstract notion of
relational similarity that is often needed for solving
the kind of psychometric analogy problems that
can be found in IQ tests and educational settings.
An example of such a problem is shown in Table 1.

Given the central role of analogy in human cog-
nition, it is nonetheless important to understand the
extent to which NLP models are able to solve these
more abstract analogy problems. Besides its value
as an intrinsic benchmark for lexical semantics,
the ability to recognize analogies is indeed impor-
tant in the contexts of human creativity (Holyoak
et al., 1996), innovation (Hope et al., 2017), com-
putational creativity (Goel, 2019) and education
(Pardos and Nam, 2020). Analogies are also a
prerequisite to build AI systems for the legal do-
main (Ashley, 1988; Walton, 2010) and are used in
machine learning (Miclet et al., 2008; Hug et al.,

Word is to language what note is to music

pre-trained language model

Can language models recognise analogies?

score

Scoring functions: perplexity

exp −
m

∑
j=1

log P(xj | xj−1)

How “fluent” are the following sentences:

word is to language what paint is to portrait
word is to language what poetry is to rhythm
word is to language what note is to music
word is to language what tale is to story
word is to language what week is to year

Scoring functions: PMI-based

How much more likely is “music” as the prediction in:

word is to language what note is to [MASK]

log P(ti |hi, hq, tq) − α log P(ti |hq, tq)

word is to language what [MASK] is to [MASK]

compared to:

Scoring functions: PMI-based

Compare the probability of the joint prediction (note,music) in:

word is to language what [MASK] is to [MASK]

word is to language what [MASK] is to [MASK]

to the probabilities of the individual predictions of note and
music, respectively in:

log P(ti, hi |hq, tq) − αt log P(ti |hq, tq) − αh log P(hi |hq, tq)

word is to language what [MASK] is to [MASK]

Results

Model Score Tuned SAT U2 U4 Google BATS Avg
LM

BERT

sPPL
32.9 32.9 34.0 80.8 61.5 48.4

X 39.8 41.7 41.0 86.8 67.9 55.4

sPMI
27.0 32.0 31.2 74.0 59.1 44.7

X 40.4 42.5 27.8 87.0 68.1 53.2
smPPL X 41.8 44.7 41.2 88.8 67.9 56.9

GPT-2

sPPL
35.9 41.2 44.9 80.4 63.5 53.2

X 50.4 48.7 51.2 93.2 75.9 63.9

sPMI
34.4 44.7 43.3 62.8 62.8 49.6

X 51.0 37.7 50.5 91.0 79.8 62.0
smPPL X 56.7 50.9 49.5 95.2 81.2 66.7

RoBERTa

sPPL
42.4 49.1 49.1 90.8 69.7 60.2

X 53.7 57.0 55.8 93.6 80.5 68.1

sPMI
35.9 42.5 44.0 60.8 60.8 48.8

X 51.3 49.1 38.7 92.4 77.2 61.7
smPPL X 53.4 58.3 57.4 93.6 78.4 68.2

W
E

FastText - 47.8 43.0 40.7 96.6 72.0 60.0
GloVe - 47.8 46.5 39.8 96.0 68.7 59.8

Word2vec - 41.8 40.4 39.6 93.2 63.8 55.8

B
as

e PMI - 23.3 32.9 39.1 57.4 42.7 39.1
Random - 20.0 23.6 24.2 25.0 25.0 23.6

Table 3: Accuracy results on each analogy dataset, categorized into language models (LM), word embeddings
(WE), and baselines (Base). All LMs use the analogical proportion (AP) function described in Section 4.3. The
default configuration for AP includes ↵ = ↵h = ↵t = � = 0, gpos = g = val1, and t = to-as. Note that
sPPL = smPPL with the default configuration. Average accuracy (Avg) across datasets is included in the last column.

sPMI and smPPL. Possible values for each hyperpa-
rameter (including the selection of six prompts and
an ablation test on the scoring function) and the
best configurations that were found by grid search
are provided in the appendix.

As baseline methods, we also consider three
pre-trained word embedding models, which have
been shown to provide competitive results in anal-
ogy tasks, as explained in Section 2.2: Word2vec
(Mikolov et al., 2013a), GloVe (Pennington et al.,
2014), and FastText (Bojanowski et al., 2017). For
the word embedding models, we simply represent
word pairs by taking the difference between their
embeddings4. We then choose the answer candi-
date with the highest cosine similarity to the query
in terms of this vector difference. To put the results
into context, we also include two simple statisti-
cal baselines. First, we report the expected ran-
dom performance. Second, we use a method based
on each word pair’s PMI in a given corpus. We
then select the answer candidate with the highest

4Vector differences have been found to be the most robust
encoding method in the context of word analogies (Hakami
and Bollegala, 2017).

PMI as the prediction. Note that the query word
pair is completely ignored in this case. This PMI
score is the well-known word-pair association met-
ric introduced by Church and Hanks (1990) for
lexicographic purposes (specifically, collocation
extraction), which compares the probability of ob-
serving two words together with the probabilities of
observing them independently (chance). The PMI
scores in our experiments were computed using the
English Wikipedia with a fixed window size 10.

5.2 Results

Table 3 shows our main results. As far as the com-
parison among LMs is concerned, RoBERTa and
GPT-2 consistently outperform BERT. Among the
AP variants, smPPL achieves substantially better re-
sults than sPMI or sPPL in most cases. We also
observe that word embeddings perform surpris-
ingly well, with FastText and GloVe outperform-
ing BERT on most datasets, as well as GPT-2 and
RoBERTa with default hyperparameters. FastText
achieves the best overall accuracy on the Google
dataset, confirming that this dataset is particularly
well-suited to word embeddings (see Section 2.2).

Automatically learned prompt, optimised scoring function

Results

Model Score Tuned SAT U2 U4 Google BATS Avg
LM

BERT

sPPL
32.9 32.9 34.0 80.8 61.5 48.4

X 39.8 41.7 41.0 86.8 67.9 55.4

sPMI
27.0 32.0 31.2 74.0 59.1 44.7

X 40.4 42.5 27.8 87.0 68.1 53.2
smPPL X 41.8 44.7 41.2 88.8 67.9 56.9

GPT-2

sPPL
35.9 41.2 44.9 80.4 63.5 53.2

X 50.4 48.7 51.2 93.2 75.9 63.9

sPMI
34.4 44.7 43.3 62.8 62.8 49.6

X 51.0 37.7 50.5 91.0 79.8 62.0
smPPL X 56.7 50.9 49.5 95.2 81.2 66.7

RoBERTa

sPPL
42.4 49.1 49.1 90.8 69.7 60.2

X 53.7 57.0 55.8 93.6 80.5 68.1

sPMI
35.9 42.5 44.0 60.8 60.8 48.8

X 51.3 49.1 38.7 92.4 77.2 61.7
smPPL X 53.4 58.3 57.4 93.6 78.4 68.2

W
E

FastText - 47.8 43.0 40.7 96.6 72.0 60.0
GloVe - 47.8 46.5 39.8 96.0 68.7 59.8

Word2vec - 41.8 40.4 39.6 93.2 63.8 55.8

B
as

e PMI - 23.3 32.9 39.1 57.4 42.7 39.1
Random - 20.0 23.6 24.2 25.0 25.0 23.6

Table 3: Accuracy results on each analogy dataset, categorized into language models (LM), word embeddings
(WE), and baselines (Base). All LMs use the analogical proportion (AP) function described in Section 4.3. The
default configuration for AP includes ↵ = ↵h = ↵t = � = 0, gpos = g = val1, and t = to-as. Note that
sPPL = smPPL with the default configuration. Average accuracy (Avg) across datasets is included in the last column.

sPMI and smPPL. Possible values for each hyperpa-
rameter (including the selection of six prompts and
an ablation test on the scoring function) and the
best configurations that were found by grid search
are provided in the appendix.

As baseline methods, we also consider three
pre-trained word embedding models, which have
been shown to provide competitive results in anal-
ogy tasks, as explained in Section 2.2: Word2vec
(Mikolov et al., 2013a), GloVe (Pennington et al.,
2014), and FastText (Bojanowski et al., 2017). For
the word embedding models, we simply represent
word pairs by taking the difference between their
embeddings4. We then choose the answer candi-
date with the highest cosine similarity to the query
in terms of this vector difference. To put the results
into context, we also include two simple statisti-
cal baselines. First, we report the expected ran-
dom performance. Second, we use a method based
on each word pair’s PMI in a given corpus. We
then select the answer candidate with the highest

4Vector differences have been found to be the most robust
encoding method in the context of word analogies (Hakami
and Bollegala, 2017).

PMI as the prediction. Note that the query word
pair is completely ignored in this case. This PMI
score is the well-known word-pair association met-
ric introduced by Church and Hanks (1990) for
lexicographic purposes (specifically, collocation
extraction), which compares the probability of ob-
serving two words together with the probabilities of
observing them independently (chance). The PMI
scores in our experiments were computed using the
English Wikipedia with a fixed window size 10.

5.2 Results

Table 3 shows our main results. As far as the com-
parison among LMs is concerned, RoBERTa and
GPT-2 consistently outperform BERT. Among the
AP variants, smPPL achieves substantially better re-
sults than sPMI or sPPL in most cases. We also
observe that word embeddings perform surpris-
ingly well, with FastText and GloVe outperform-
ing BERT on most datasets, as well as GPT-2 and
RoBERTa with default hyperparameters. FastText
achieves the best overall accuracy on the Google
dataset, confirming that this dataset is particularly
well-suited to word embeddings (see Section 2.2).

abstract
analogies

encyclopaedic and
morphological knowledge

Model Score Tuned SAT U2 U4 Google BATS Avg
LM

BERT

sPPL
32.9 32.9 34.0 80.8 61.5 48.4

X 39.8 41.7 41.0 86.8 67.9 55.4

sPMI
27.0 32.0 31.2 74.0 59.1 44.7

X 40.4 42.5 27.8 87.0 68.1 53.2
smPPL X 41.8 44.7 41.2 88.8 67.9 56.9

GPT-2

sPPL
35.9 41.2 44.9 80.4 63.5 53.2

X 50.4 48.7 51.2 93.2 75.9 63.9

sPMI
34.4 44.7 43.3 62.8 62.8 49.6

X 51.0 37.7 50.5 91.0 79.8 62.0
smPPL X 56.7 50.9 49.5 95.2 81.2 66.7

RoBERTa

sPPL
42.4 49.1 49.1 90.8 69.7 60.2

X 53.7 57.0 55.8 93.6 80.5 68.1

sPMI
35.9 42.5 44.0 60.8 60.8 48.8

X 51.3 49.1 38.7 92.4 77.2 61.7
smPPL X 53.4 58.3 57.4 93.6 78.4 68.2

W
E

FastText - 47.8 43.0 40.7 96.6 72.0 60.0
GloVe - 47.8 46.5 39.8 96.0 68.7 59.8

Word2vec - 41.8 40.4 39.6 93.2 63.8 55.8

B
as

e PMI - 23.3 32.9 39.1 57.4 42.7 39.1
Random - 20.0 23.6 24.2 25.0 25.0 23.6

Table 3: Accuracy results on each analogy dataset, categorized into language models (LM), word embeddings
(WE), and baselines (Base). All LMs use the analogical proportion (AP) function described in Section 4.3. The
default configuration for AP includes ↵ = ↵h = ↵t = � = 0, gpos = g = val1, and t = to-as. Note that
sPPL = smPPL with the default configuration. Average accuracy (Avg) across datasets is included in the last column.

sPMI and smPPL. Possible values for each hyperpa-
rameter (including the selection of six prompts and
an ablation test on the scoring function) and the
best configurations that were found by grid search
are provided in the appendix.

As baseline methods, we also consider three
pre-trained word embedding models, which have
been shown to provide competitive results in anal-
ogy tasks, as explained in Section 2.2: Word2vec
(Mikolov et al., 2013a), GloVe (Pennington et al.,
2014), and FastText (Bojanowski et al., 2017). For
the word embedding models, we simply represent
word pairs by taking the difference between their
embeddings4. We then choose the answer candi-
date with the highest cosine similarity to the query
in terms of this vector difference. To put the results
into context, we also include two simple statisti-
cal baselines. First, we report the expected ran-
dom performance. Second, we use a method based
on each word pair’s PMI in a given corpus. We
then select the answer candidate with the highest

4Vector differences have been found to be the most robust
encoding method in the context of word analogies (Hakami
and Bollegala, 2017).

PMI as the prediction. Note that the query word
pair is completely ignored in this case. This PMI
score is the well-known word-pair association met-
ric introduced by Church and Hanks (1990) for
lexicographic purposes (specifically, collocation
extraction), which compares the probability of ob-
serving two words together with the probabilities of
observing them independently (chance). The PMI
scores in our experiments were computed using the
English Wikipedia with a fixed window size 10.

5.2 Results

Table 3 shows our main results. As far as the com-
parison among LMs is concerned, RoBERTa and
GPT-2 consistently outperform BERT. Among the
AP variants, smPPL achieves substantially better re-
sults than sPMI or sPPL in most cases. We also
observe that word embeddings perform surpris-
ingly well, with FastText and GloVe outperform-
ing BERT on most datasets, as well as GPT-2 and
RoBERTa with default hyperparameters. FastText
achieves the best overall accuracy on the Google
dataset, confirming that this dataset is particularly
well-suited to word embeddings (see Section 2.2).

Results

Results

Model Score Tuned SAT U2 U4 Google BATS Avg
LM

BERT

sPPL
32.9 32.9 34.0 80.8 61.5 48.4

X 39.8 41.7 41.0 86.8 67.9 55.4

sPMI
27.0 32.0 31.2 74.0 59.1 44.7

X 40.4 42.5 27.8 87.0 68.1 53.2
smPPL X 41.8 44.7 41.2 88.8 67.9 56.9

GPT-2

sPPL
35.9 41.2 44.9 80.4 63.5 53.2

X 50.4 48.7 51.2 93.2 75.9 63.9

sPMI
34.4 44.7 43.3 62.8 62.8 49.6

X 51.0 37.7 50.5 91.0 79.8 62.0
smPPL X 56.7 50.9 49.5 95.2 81.2 66.7

RoBERTa

sPPL
42.4 49.1 49.1 90.8 69.7 60.2

X 53.7 57.0 55.8 93.6 80.5 68.1

sPMI
35.9 42.5 44.0 60.8 60.8 48.8

X 51.3 49.1 38.7 92.4 77.2 61.7
smPPL X 53.4 58.3 57.4 93.6 78.4 68.2

W
E

FastText - 47.8 43.0 40.7 96.6 72.0 60.0
GloVe - 47.8 46.5 39.8 96.0 68.7 59.8

Word2vec - 41.8 40.4 39.6 93.2 63.8 55.8

B
as

e PMI - 23.3 32.9 39.1 57.4 42.7 39.1
Random - 20.0 23.6 24.2 25.0 25.0 23.6

Table 3: Accuracy results on each analogy dataset, categorized into language models (LM), word embeddings
(WE), and baselines (Base). All LMs use the analogical proportion (AP) function described in Section 4.3. The
default configuration for AP includes ↵ = ↵h = ↵t = � = 0, gpos = g = val1, and t = to-as. Note that
sPPL = smPPL with the default configuration. Average accuracy (Avg) across datasets is included in the last column.

sPMI and smPPL. Possible values for each hyperpa-
rameter (including the selection of six prompts and
an ablation test on the scoring function) and the
best configurations that were found by grid search
are provided in the appendix.

As baseline methods, we also consider three
pre-trained word embedding models, which have
been shown to provide competitive results in anal-
ogy tasks, as explained in Section 2.2: Word2vec
(Mikolov et al., 2013a), GloVe (Pennington et al.,
2014), and FastText (Bojanowski et al., 2017). For
the word embedding models, we simply represent
word pairs by taking the difference between their
embeddings4. We then choose the answer candi-
date with the highest cosine similarity to the query
in terms of this vector difference. To put the results
into context, we also include two simple statisti-
cal baselines. First, we report the expected ran-
dom performance. Second, we use a method based
on each word pair’s PMI in a given corpus. We
then select the answer candidate with the highest

4Vector differences have been found to be the most robust
encoding method in the context of word analogies (Hakami
and Bollegala, 2017).

PMI as the prediction. Note that the query word
pair is completely ignored in this case. This PMI
score is the well-known word-pair association met-
ric introduced by Church and Hanks (1990) for
lexicographic purposes (specifically, collocation
extraction), which compares the probability of ob-
serving two words together with the probabilities of
observing them independently (chance). The PMI
scores in our experiments were computed using the
English Wikipedia with a fixed window size 10.

5.2 Results

Table 3 shows our main results. As far as the com-
parison among LMs is concerned, RoBERTa and
GPT-2 consistently outperform BERT. Among the
AP variants, smPPL achieves substantially better re-
sults than sPMI or sPPL in most cases. We also
observe that word embeddings perform surpris-
ingly well, with FastText and GloVe outperform-
ing BERT on most datasets, as well as GPT-2 and
RoBERTa with default hyperparameters. FastText
achieves the best overall accuracy on the Google
dataset, confirming that this dataset is particularly
well-suited to word embeddings (see Section 2.2).

Results
Model Score Tuned Accuracy

LM

BERT

sPPL
32.6

X 40.4*

sPMI
26.8

X 41.2*
smPPL X 42.8*

GPT-2

sPPL
41.4

X 56.2*

sPMI
34.7

X 56.8*
smPPL X 57.8*

RoBERTa

sPPL
49.6

X 55.8*

sPMI
42.5

X 54.0*
smPPL X 55.8*

GPT-3 Zero-shot 53.7
Few-shot X 65.2*

- LRA - 56.4

WE
FastText - 49.7
GloVe - 48.9

Word2vec - 42.8

Base PMI - 23.3
Random - 20.0

Table 4: Accuracy results for the full SAT dataset. Re-
sults marked with * are not directly comparable as they
were tuned on full data (for our models) or use training
data (for GPT-3 few-shot). These results are included
to provide an upper bound only. Results in italics were
taken from the original papers.

In order to compare with published results from
prior work, we carried out an additional experiment
on the full SAT dataset (i.e., without splitting it into
validation and test). Table 4 shows the results. GPT-
3 (Brown et al., 2020) and LRA (Turney, 2005) are
added for comparison. Given the variability of the
results depending on the tuning procedure, we have
also reported results of configurations that were
tuned on the entire set, to provide an upper bound
on what is possible within the proposed unsuper-
vised setting. This result shows that even with
optimal hyperparameter values, LMs barely outper-
form the performance of the simpler LRA model.
GPT-3 similarly fails to outperform LRA in the
zero-shot setting.

6 Analysis

We now take a closer look into our results to investi-
gate parameter sensitivity, the correlation between
model performance and human difficulty levels,
and possible dataset artifacts. The following analy-
sis focuses on smPPL as it achieved the best results
among the LM based scoring functions.

Figure 3: Box plot of the relative improvement on
test accuracy in each dataset over all configurations of
smPPL grouped by gpos. Here valk corresponds to kth
positive permutation shown in Figure 2.

Parameter Sensitivity We found that optimal
values of the parameters ↵ and � are highly depen-
dent on the dataset, while other parameters such
as the template type t vary across LMs. On the
other hand, as shown in Figure 3, the optimal per-
mutations of the templates are relatively consistent,
with the original ordering a : b :: c : d typically
achieving the best results. The results degrade most
for permutations that mix the two word pairs (e.g.
a : c :: b : d). In the appendix we include an abla-
tion study for the sensitivity and relevance of other
parameters and design choices.

Difficulty Levels To increase our understanding
of what makes an analogy problem difficult for
LMs, we compare the results for each difficulty
level.5 Recall from Section 3.2 that the U2 and
U4 datasets come from educational resources and
are split by difficulty level. Figure 4 shows the
results of all LMs (tuned setting), FastText and
the PMI baseline according to these difficulty lev-
els. Broadly speaking, we can see that instances
that are harder for humans are also harder for the
considered models. The analogies in the most
difficult levels are generally more abstract (e.g.
witness : testimony :: generator : electricity), or
contain obscure or infrequent words (e.g. grouch :
cantakerous :: palace : ornate).6

5For SAT, Google and BATS, there are no difficulty levels
available, but we show the results split by high-level categories
in the appendix. We also note that the number of candidates
in U2 and U4 vary from three to five, so results per difficulty
level are not fully comparable. However, they do reflect the
actual difficulty of the educational tests.

6In the appendix we include more examples with errors
made by RoBERTa in easy instances.

Easier for humans = easier for LMs?

Figure 4: Test accuracy in U2 and U4 per difficulty
level. LMs use smPPL with the best configuration tuned
in the corresponding validation sets.

Hypothesis Only Recently, several researchers
have found that standard NLP benchmarks, such
as SNLI (Bowman et al., 2015) for language in-
ference, contain several annotation artifacts that
makes the task simpler for automatic models (Po-
liak et al., 2018; Gururangan et al., 2018). One of
their most relevant findings is that models which do
not even consider the premise can reach high accu-
racy. More generally, these issues have been found
to be problematic in NLP models (Linzen, 2020)
and neural networks more generally (Geirhos et al.,
2020). According to the results shown in Table 3,
we already found that the PMI baseline achieved a
non-trivial performance, even outperforming BERT
in a few settings and datasets. This suggests that
several implausible negative examples are included
in the analogy datasets. As a further exploration of
such artifacts, here we analyse the analogue of a
hypothesis-only baseline. In particular, for this anal-
ysis, we masked the head or tail of the candidate
answer in all evaluation instances. Then, we test
the masked language models with the same AP con-

Mask SAT U2 U4 Google BATS

B
ER

T full 41.8 44.7 41.2 88.8 67.9
head 31.8 28.1 34.3 72.0 62.4
tail 33.5 31.6 38.2 64.2 63.1

R
oB

ER
Ta full 53.4 58.3 57.4 93.6 78.4

head 38.6 37.7 41.0 60.6 54.5
tail 35.6 37.3 40.5 55.8 64.2

Table 5: Accuracy results by masking head or tail of the
candidate answers. Results in the top row correspond
to the full model without masking.

figuration and tuning on these artificially-modified
datasets.As can be seen in Table 5, a non-trivial
performance is achieved for all datasets, which sug-
gests that the words from the answer pair tend to
be more similar to the words from the query than
the words from negative examples.

7 Conclusion

In this paper, we have presented an extensive anal-
ysis of the ability of language models to identify
analogies. To this end, we first compiled datasets
with psychometric analogy problems from educa-
tional resources, covering a wide range of diffi-
culty levels and topics. We also recast two stan-
dard benchmarks, the Google and BATS analogy
datasets, into the same style of problems. Then, we
proposed standard techniques to apply language
models to the unsupervised task of solving these
analogy problems. Our empirical results shed light
on the strengths and limitations of various models.
To directly answer the question posed in the title,
our conclusion is that language models can identify
analogies to a certain extent, but not all language
models are able to achieve a meaningful improve-
ment over word embeddings (whose limitations in
analogy tasks are well documented). On the other
hand, when carefully tuned, some language mod-
els are able to achieve state-of-the-art results. We
emphasize that results are highly sensitive to the
chosen hyperparameters (which define the scoring
function and the prompt among others). Further
research could focus on the selection of these opti-
mal hyperparameters, including automatizing the
search or generation of prompts, along the lines
of Bouraoui et al. (2020) and Shin et al. (2020),
respectively. Finally, clearly LMs might still be
able to learn to solve analogy tasks when given
appropriate training data, which is an aspect that
we leave for future work.

Figure 4: Test accuracy in U2 and U4 per difficulty
level. LMs use smPPL with the best configuration tuned
in the corresponding validation sets.

Hypothesis Only Recently, several researchers
have found that standard NLP benchmarks, such
as SNLI (Bowman et al., 2015) for language in-
ference, contain several annotation artifacts that
makes the task simpler for automatic models (Po-
liak et al., 2018; Gururangan et al., 2018). One of
their most relevant findings is that models which do
not even consider the premise can reach high accu-
racy. More generally, these issues have been found
to be problematic in NLP models (Linzen, 2020)
and neural networks more generally (Geirhos et al.,
2020). According to the results shown in Table 3,
we already found that the PMI baseline achieved a
non-trivial performance, even outperforming BERT
in a few settings and datasets. This suggests that
several implausible negative examples are included
in the analogy datasets. As a further exploration of
such artifacts, here we analyse the analogue of a
hypothesis-only baseline. In particular, for this anal-
ysis, we masked the head or tail of the candidate
answer in all evaluation instances. Then, we test
the masked language models with the same AP con-

Mask SAT U2 U4 Google BATS

B
ER

T full 41.8 44.7 41.2 88.8 67.9
head 31.8 28.1 34.3 72.0 62.4
tail 33.5 31.6 38.2 64.2 63.1

R
oB

ER
Ta full 53.4 58.3 57.4 93.6 78.4

head 38.6 37.7 41.0 60.6 54.5
tail 35.6 37.3 40.5 55.8 64.2

Table 5: Accuracy results by masking head or tail of the
candidate answers. Results in the top row correspond
to the full model without masking.

figuration and tuning on these artificially-modified
datasets.As can be seen in Table 5, a non-trivial
performance is achieved for all datasets, which sug-
gests that the words from the answer pair tend to
be more similar to the words from the query than
the words from negative examples.

7 Conclusion

In this paper, we have presented an extensive anal-
ysis of the ability of language models to identify
analogies. To this end, we first compiled datasets
with psychometric analogy problems from educa-
tional resources, covering a wide range of diffi-
culty levels and topics. We also recast two stan-
dard benchmarks, the Google and BATS analogy
datasets, into the same style of problems. Then, we
proposed standard techniques to apply language
models to the unsupervised task of solving these
analogy problems. Our empirical results shed light
on the strengths and limitations of various models.
To directly answer the question posed in the title,
our conclusion is that language models can identify
analogies to a certain extent, but not all language
models are able to achieve a meaningful improve-
ment over word embeddings (whose limitations in
analogy tasks are well documented). On the other
hand, when carefully tuned, some language mod-
els are able to achieve state-of-the-art results. We
emphasize that results are highly sensitive to the
chosen hyperparameters (which define the scoring
function and the prompt among others). Further
research could focus on the selection of these opti-
mal hyperparameters, including automatizing the
search or generation of prompts, along the lines
of Bouraoui et al. (2020) and Shin et al. (2020),
respectively. Finally, clearly LMs might still be
able to learn to solve analogy tasks when given
appropriate training data, which is an aspect that
we leave for future work.

Are the results robust under permutations?

and returns a sentence in which the placeholders
were replaced by the words w1, w2, w3, and w4.
For instance, given a query “word:language” and
a candidate “note:music”, the prompting function
produces

Tto-as(“word”, “language”, “note”, “music”) =
“word is to language as note is to music”

where we use the template type to-as here.
Using manually specified template types can re-

sult in a sub-optimal textual representation. For
this reason, recent studies have proposed auto-
prompting strategies, which optimize the template
type on a training set (Shin et al., 2020), paraphras-
ing (Jiang et al., 2020), additional prompt genera-
tion model (Gao et al., 2020), and corpus-driven
template mining (Bouraoui et al., 2020). How-
ever, none of these approaches can be applied to
unsupervised settings. Thus, we do not explore
auto-prompting methods in this work. Instead, we
will consider a number of different template types
in the experiments, and assess the sensitivity of the
results to the choice of template type.

4.2 Scoring Function
Perplexity. We first define perplexity, which is
widely used as a sentence re-ranking metric (Chan
et al., 2016; Gulcehre et al., 2015). Given a sen-
tence x, for autoregressive LMs such as LSTM
based models (Zaremba et al., 2014) and GPTs
(Radford et al., 2018, 2019; Brown et al., 2020),
perplexity can be computed as

f(x) = exp

0

@�
mX

j=1

logPauto(xj |xj�1)

1

A (1)

where x is tokenized as [x1...xm] and Pauto(x|x)
is the likelihood from an autoregressive LM’s
next token prediction. For masked LMs such
as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019), we instead use pseudo-
perplexity, which is defined as in (1) but
with Pmask(xj |x\j) instead of Pauto(xj |xj�1),
where x\j = [x1 . . . xj1〈mask〉xj+1 . . . xm] and
Pmask(xj |x\j) is the pseudo-likelihood (Wang and
Cho, 2019) that the masked token is xj .
PMI. Although perplexity is well-suited to capture
the fluency of a sentence, it may not be the best
choice to test the plausibility of a given analogical
proportion candidate. As an alternative, we pro-
pose a scoring function that focuses specifically

Figure 2: Positive and negative permutations for a rela-
tion pair (a:b)-(c:d).

on words from the two given pairs. To this end,
we propose to use an approximation of point-wise
mutual information (PMI), based on perplexity.

PMI is defined as the difference between a condi-
tional and marginal log-likelihood. In our case, we
consider the conditional likelihood of ti given hi
and the query pair (recall from Section 3.1 that
h and t represent the head and tail of a given
word pair, respectively), i.e. P (ti|hq, tq, hi), and
the marginal likelihood over hi, i.e. P (ti|hq, tq).
Subsequently, the PMI-inspired scoring function is
defined as

r(ti|hi, hq, tq) = logP (ti|hi, hq, tq)
� ↵ · logP (ti|hq, tq) (2)

where ↵ is a hyperparameter to control the effect
of the marginal likelihood. The PMI score corre-
sponds to the specific case where ↵ = 1. However,
Davison et al. (2019) found that using a hyperpa-
rameter to balance the impact of the conditional and
marginal probabilities can significantly improve the
results. The probabilities in (2) are estimated by
assuming that the answer candidates are the only
possible word pairs that need to be considered. By
relying on this closed-world assumption, we can
estimate marginal probabilities based on perplex-
ity, which we found to give better results than the
masking based strategy from Davison et al. (2019).
In particular, we estimate these probabilities as

P (ti|hq, tq, hi) = � f (Tt(hq, tq, hi, ti))
nP

k=1
f (Tt(hq, tq, hi, tk))

P (ti|hq, tq) = �

nP
k=1

f (Tt(hq, tq, hk, ti))
nP

k=1

nP
l=1

f (Tt(hq, tq, hk, tl))

Are the results robust under permutations?

and returns a sentence in which the placeholders
were replaced by the words w1, w2, w3, and w4.
For instance, given a query “word:language” and
a candidate “note:music”, the prompting function
produces

Tto-as(“word”, “language”, “note”, “music”) =
“word is to language as note is to music”

where we use the template type to-as here.
Using manually specified template types can re-

sult in a sub-optimal textual representation. For
this reason, recent studies have proposed auto-
prompting strategies, which optimize the template
type on a training set (Shin et al., 2020), paraphras-
ing (Jiang et al., 2020), additional prompt genera-
tion model (Gao et al., 2020), and corpus-driven
template mining (Bouraoui et al., 2020). How-
ever, none of these approaches can be applied to
unsupervised settings. Thus, we do not explore
auto-prompting methods in this work. Instead, we
will consider a number of different template types
in the experiments, and assess the sensitivity of the
results to the choice of template type.

4.2 Scoring Function
Perplexity. We first define perplexity, which is
widely used as a sentence re-ranking metric (Chan
et al., 2016; Gulcehre et al., 2015). Given a sen-
tence x, for autoregressive LMs such as LSTM
based models (Zaremba et al., 2014) and GPTs
(Radford et al., 2018, 2019; Brown et al., 2020),
perplexity can be computed as

f(x) = exp

0

@�
mX

j=1

logPauto(xj |xj�1)

1

A (1)

where x is tokenized as [x1...xm] and Pauto(x|x)
is the likelihood from an autoregressive LM’s
next token prediction. For masked LMs such
as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019), we instead use pseudo-
perplexity, which is defined as in (1) but
with Pmask(xj |x\j) instead of Pauto(xj |xj�1),
where x\j = [x1 . . . xj1〈mask〉xj+1 . . . xm] and
Pmask(xj |x\j) is the pseudo-likelihood (Wang and
Cho, 2019) that the masked token is xj .
PMI. Although perplexity is well-suited to capture
the fluency of a sentence, it may not be the best
choice to test the plausibility of a given analogical
proportion candidate. As an alternative, we pro-
pose a scoring function that focuses specifically

Figure 2: Positive and negative permutations for a rela-
tion pair (a:b)-(c:d).

on words from the two given pairs. To this end,
we propose to use an approximation of point-wise
mutual information (PMI), based on perplexity.

PMI is defined as the difference between a condi-
tional and marginal log-likelihood. In our case, we
consider the conditional likelihood of ti given hi
and the query pair (recall from Section 3.1 that
h and t represent the head and tail of a given
word pair, respectively), i.e. P (ti|hq, tq, hi), and
the marginal likelihood over hi, i.e. P (ti|hq, tq).
Subsequently, the PMI-inspired scoring function is
defined as

r(ti|hi, hq, tq) = logP (ti|hi, hq, tq)
� ↵ · logP (ti|hq, tq) (2)

where ↵ is a hyperparameter to control the effect
of the marginal likelihood. The PMI score corre-
sponds to the specific case where ↵ = 1. However,
Davison et al. (2019) found that using a hyperpa-
rameter to balance the impact of the conditional and
marginal probabilities can significantly improve the
results. The probabilities in (2) are estimated by
assuming that the answer candidates are the only
possible word pairs that need to be considered. By
relying on this closed-world assumption, we can
estimate marginal probabilities based on perplex-
ity, which we found to give better results than the
masking based strategy from Davison et al. (2019).
In particular, we estimate these probabilities as

P (ti|hq, tq, hi) = � f (Tt(hq, tq, hi, ti))
nP

k=1
f (Tt(hq, tq, hi, tk))

P (ti|hq, tq) = �

nP
k=1

f (Tt(hq, tq, hk, ti))
nP

k=1

nP
l=1

f (Tt(hq, tq, hk, tl))

Model Score Tuned Accuracy

LM

BERT

sPPL
32.6

X 40.4*

sPMI
26.8

X 41.2*
smPPL X 42.8*

GPT-2

sPPL
41.4

X 56.2*

sPMI
34.7

X 56.8*
smPPL X 57.8*

RoBERTa

sPPL
49.6

X 55.8*

sPMI
42.5

X 54.0*
smPPL X 55.8*

GPT-3 Zero-shot 53.7
Few-shot X 65.2*

- LRA - 56.4

WE
FastText - 49.7
GloVe - 48.9

Word2vec - 42.8

Base PMI - 23.3
Random - 20.0

Table 4: Accuracy results for the full SAT dataset. Re-
sults marked with * are not directly comparable as they
were tuned on full data (for our models) or use training
data (for GPT-3 few-shot). These results are included
to provide an upper bound only. Results in italics were
taken from the original papers.

In order to compare with published results from
prior work, we carried out an additional experiment
on the full SAT dataset (i.e., without splitting it into
validation and test). Table 4 shows the results. GPT-
3 (Brown et al., 2020) and LRA (Turney, 2005) are
added for comparison. Given the variability of the
results depending on the tuning procedure, we have
also reported results of configurations that were
tuned on the entire set, to provide an upper bound
on what is possible within the proposed unsuper-
vised setting. This result shows that even with
optimal hyperparameter values, LMs barely outper-
form the performance of the simpler LRA model.
GPT-3 similarly fails to outperform LRA in the
zero-shot setting.

6 Analysis

We now take a closer look into our results to investi-
gate parameter sensitivity, the correlation between
model performance and human difficulty levels,
and possible dataset artifacts. The following analy-
sis focuses on smPPL as it achieved the best results
among the LM based scoring functions.

Figure 3: Box plot of the relative improvement on
test accuracy in each dataset over all configurations of
smPPL grouped by gpos. Here valk corresponds to kth
positive permutation shown in Figure 2.

Parameter Sensitivity We found that optimal
values of the parameters ↵ and � are highly depen-
dent on the dataset, while other parameters such
as the template type t vary across LMs. On the
other hand, as shown in Figure 3, the optimal per-
mutations of the templates are relatively consistent,
with the original ordering a : b :: c : d typically
achieving the best results. The results degrade most
for permutations that mix the two word pairs (e.g.
a : c :: b : d). In the appendix we include an abla-
tion study for the sensitivity and relevance of other
parameters and design choices.

Difficulty Levels To increase our understanding
of what makes an analogy problem difficult for
LMs, we compare the results for each difficulty
level.5 Recall from Section 3.2 that the U2 and
U4 datasets come from educational resources and
are split by difficulty level. Figure 4 shows the
results of all LMs (tuned setting), FastText and
the PMI baseline according to these difficulty lev-
els. Broadly speaking, we can see that instances
that are harder for humans are also harder for the
considered models. The analogies in the most
difficult levels are generally more abstract (e.g.
witness : testimony :: generator : electricity), or
contain obscure or infrequent words (e.g. grouch :
cantakerous :: palace : ornate).6

5For SAT, Google and BATS, there are no difficulty levels
available, but we show the results split by high-level categories
in the appendix. We also note that the number of candidates
in U2 and U4 vary from three to five, so results per difficulty
level are not fully comparable. However, they do reflect the
actual difficulty of the educational tests.

6In the appendix we include more examples with errors
made by RoBERTa in easy instances.

Distilling Relation Embeddings from Pre-trained Language Models

Asahi Ushio and Jose Camacho-Collados and Steven Schockaert
Cardiff NLP, School of Computer Science and Informatics

Cardiff University, United Kingdom
{UshioA,CamachoColladosJ,SchockaertS1}@cardiff.ac.uk

Abstract

Pre-trained language models have been found
to capture a surprisingly rich amount of lexical
knowledge, ranging from commonsense prop-
erties of everyday concepts to detailed factual
knowledge about named entities. Among oth-
ers, this makes it possible to distill high-quality
word vectors from pre-trained language mod-
els. However, it is currently unclear to what ex-
tent it is possible to distill relation embeddings,
i.e. vectors that characterize the relationship
between two words. Such relation embeddings
are appealing because they can, in principle,
encode relational knowledge in a more fine-
grained way than is possible with knowledge
graphs. To obtain relation embeddings from a
pre-trained language model, we encode word
pairs using a (manually or automatically gen-
erated) prompt, and we fine-tune the language
model such that relationally similar word pairs
yield similar output vectors. We find that
the resulting relation embeddings are highly
competitive on analogy (unsupervised) and re-
lation classification (supervised) benchmarks,
even without any task-specific fine-tuning.1

1 Introduction

One of the most widely studied aspects of word
embeddings is the fact that word vector differences
capture lexical relations (Mikolov et al., 2013a).
While not being directly connected to downstream
performance on NLP tasks, this ability of word em-
beddings is nonetheless important. For instance,
understanding lexical relations is an important pre-
requisite for understanding the meaning of com-
pound nouns (Turney, 2012). Moreover, the ability
of word vectors to capture semantic relations has
enabled a wide range of applications beyond NLP,
including flexible querying of relational databases
(Bordawekar and Shmueli, 2017), schema match-

1Source code to reproduce our experimental results and the
model checkpoints are available in the following repository:
https://github.com/asahi417/relbert

ing (Fernandez et al., 2018), completion and re-
trieval of Web tables (Zhang et al., 2019), ontology
completion (Bouraoui and Schockaert, 2019) and
information retrieval in the medical domain (Ar-
guello Casteleiro et al., 2020). More generally,
relational similarity (or analogy) plays a central
role in computational creativity (Goel, 2019), le-
gal reasoning (Ashley, 1988; Walton, 2010), on-
tology alignment (Raad and Evermann, 2015) and
instance-based learning (Miclet et al., 2008).

Given the recent success of pre-trained language
models (Devlin et al., 2019; Liu et al., 2019; Brown
et al., 2020), we may wonder whether such mod-
els are able to capture lexical relations in a more
faithful or fine-grained way than traditional word
embeddings. However, for language models (LMs),
there is no direct equivalent to the word vector
difference. In this paper, we therefore propose a
strategy for extracting relation embeddings from
pre-trained LMs, i.e. vectors encoding the relation-
ship between two words. On the one hand, this
will allow us to gain a better understanding of how
well lexical relations are captured by these models.
On the other hand, this will also provide us with a
practical method for obtaining relation embeddings
in applications such as the ones mentioned above.

Since it is unclear how LMs store relational
knowledge, rather than directly extracting relation
embeddings, we first fine-tune the LM, such that re-
lation embeddings can be obtained from its output.
To this end, we need a prompt, i.e. a template to
convert a given word pair into a sentence, and some
training data to fine-tune the model. To illustrate
the process, consider the word pair Paris-France.
As a possible input to the model, we could use
a sentence such as “The relation between Paris
and France is <mask>". Note that our aim is to
find a strategy that can be applied to any pair of
words, hence the way in which the input is repre-
sented needs to be sufficiently generic. We then
fine-tune the LM such that its output corresponds

The relation between word and language is [MASK]

pre-trained language model

relation vector

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H.
Miller: Language Models as Knowledge Bases? EMNLP/IJCNLP (1) 2019: 2463-2473

Learning relation vectors

David Jurgens, Saif Mohammad, Peter D. Turney, Keith J. Holyoak: SemEval-2012 Task 2: Measuring Degrees of
Relational Similarity. SemEval@NAACL-HLT 2012: 356-364

Fine-tune BERT on SemEval-2012 Task 2 data

Subcategory Relation name Relation schema Paradigms Responses

8(e) AGENT:GOAL “Y is the goal of X” pilgrim:shrine patient:health
assassin:death runner:finish
climber:peak astronaut:space

5(e) OBJECT:TYPICAL ACTION “an X will typically Y ” glass:break ice:melt
soldier:fight lion:roar
juggernaut:crush knife:stab

4(h) DEFECTIVE “an X is is a defect in Y ” fallacy:logic pimple:skin
astigmatism:sight ignorance:learning
limp:walk tumor:body

Table 1: Examples of the three manually selected paradigms and the corresponding pairs generated by Turkers.

“List all things that are part of a car.” SemEval-
2007 Task 4 proposed that a relational search engine
would use semantic relation classification to answer
queries like this one. For this query, a classifier that
was trained with the relation PART:WHOLE would be
used. However, a system for measuring degrees of
relational similarity would be better suited to rela-
tional search than a discrete classifier, because the
relational search engine could then rank the output
list in order of applicability. For the same query, the
search engine could rank each item X in descending
order of the degree of relational similarity between
X:car and a training set of prototypical examples of
the relation PART:WHOLE. This would be analogous
to how standard search engines rank documents or
web pages in descending order of relevance to the
user’s query.

As a second example, consider the role of rela-
tional similarity in analogical transfer. When faced
with a new situation, we look for an analogous sit-
uation in our past experience, and we use analogi-
cal inference to transfer information from the past
experience (the source domain) to the new situation
(the target domain) (Gentner, 1983; Holyoak, 2012).
Analogy is based on relational similarity (Gentner,
1983; Turney, 2008). The degree of relational sim-
ilarity in an analogy is indicative of the likelihood
that transferred knowledge will be applicable in the
target domain. For example, past experience tells us
that a dog barks to send a signal to other creatures. If
we transfer this knowledge to a new experience with
a cat meowing, we can predict that the cat is sending
a signal, and we can act appropriately with that pre-
diction. If we transfer this knowledge to a new expe-
rience with a floor squeaking, we might predict that

the floor is sending a signal, which might lead us to
act inappropriately. If we have a choice among sev-
eral source analogies, usually the source pair with
the highest degree of relational similarity to the tar-
get pair will prove to be the most useful analogy in
the target domain, providing practical benefits be-
yond discrete relational classification.

2 Task Description

Here, we describe our task and the two-level hierar-
chy of semantic relation classes used for the task.

2.1 Objective
Our task is to rate word pairs by the degree to
which they are prototypical members of a given re-
lation class. The relation class is specified by a
few paradigmatic (highly prototypical) examples of
word pairs that belong to the class and also by a
schematic representation of the relation class. The
task requires comparing a word pair to the paradig-
matic examples and/or the schematic representation.
For example, suppose the relation class is REVERSE.
We may specify this class by the paradigmatic ex-
amples attack:defend, buy:sell, love:hate, and the
schematic representation “X is the reverse act of
Y ” or “X may be undone by Y .” Given a pair
such as repair:break, we compare this pair to the
paradigmatic examples and/or the schematic repre-
sentation, in order to estimate its degree of prototyp-
icality. The challenges are (1) to infer the relation
from the paradigmatic examples and identify what
relational or featural attributes best characterize that
relation, and (2) to identify the relation of the given
pair and rate how similar it is to that shared by the
paradigmatic examples.

357

David Jurgens, Saif Mohammad, Peter D. Turney, Keith J. Holyoak: SemEval-2012 Task 2: Measuring Degrees of
Relational Similarity. SemEval@NAACL-HLT 2012: 356-364

Fine-tune BERT on SemEval-2012 Task 2 data

 66.0 "fire:hot"
 59.6 "villain:evil"
 53.8 "water:wet"
 43.1 "tycoon:wealthy"
 42.3 "snow:cold"
 35.3 "candy:sweet"
 32.0 "professor:intellectual"
 30.0 "steel:strong"
 30.0 "novice:inexperience"
…
-45.1 "prince:charming"
-46.0 "heat:fire"
-52.0 "lipstick:red"
-56.9 "fizzy:pop"
-60.0 "man:tall"
-72.5 "flimsy:paper"
-72.5 "tall:man"
-76.5 "intellectual:professor"

 56.0 "loss:grief"
 48.0 "injury:pain"
 44.0 "disease:sickness"
 42.0 "explosion:damage"
 41.2 "accident:damage"
 34.5 "germs:sickness"
 30.0 "bath:cleanliness"
 26.0 "exercise:fitness"
 22.0 "tragedy:tears"
…
-22.0 "digging:hole"
-24.0 "sow:germinate"
-28.0 "yelling:anger"
-42.0 "headache:stress"
-48.0 "learning:study"
-62.0 "response:stimulus"
-66.0 "boredom:repetition"
-74.0 "sweat:run"

…

David Jurgens, Saif Mohammad, Peter D. Turney, Keith J. Holyoak: SemEval-2012 Task 2: Measuring Degrees of
Relational Similarity. SemEval@NAACL-HLT 2012: 356-364

Fine-tune BERT on SemEval-2012 Task 2 data

 66.0 "fire:hot"
 59.6 "villain:evil"
 53.8 "water:wet"
 43.1 "tycoon:wealthy"
 42.3 "snow:cold"
 35.3 "candy:sweet"
 32.0 "professor:intellectual"
 30.0 "steel:strong"
 30.0 "novice:inexperience"
…
-45.1 "prince:charming"
-46.0 "heat:fire"
-52.0 "lipstick:red"
-56.9 "fizzy:pop"
-60.0 "man:tall"
-72.5 "flimsy:paper"
-72.5 "tall:man"
-76.5 "intellectual:professor"

 56.0 "loss:grief"
 48.0 "injury:pain"
 44.0 "disease:sickness"
 42.0 "explosion:damage"
 41.2 "accident:damage"
 34.5 "germs:sickness"
 30.0 "bath:cleanliness"
 26.0 "exercise:fitness"
 22.0 "tragedy:tears"
…
-22.0 "digging:hole"
-24.0 "sow:germinate"
-28.0 "yelling:anger"
-42.0 "headache:stress"
-48.0 "learning:study"
-62.0 "response:stimulus"
-66.0 "boredom:repetition"
-74.0 "sweat:run"

…

should be similar

David Jurgens, Saif Mohammad, Peter D. Turney, Keith J. Holyoak: SemEval-2012 Task 2: Measuring Degrees of
Relational Similarity. SemEval@NAACL-HLT 2012: 356-364

Fine-tune BERT on SemEval-2012 Task 2 data

 66.0 "fire:hot"
 59.6 "villain:evil"
 53.8 "water:wet"
 43.1 "tycoon:wealthy"
 42.3 "snow:cold"
 35.3 "candy:sweet"
 32.0 "professor:intellectual"
 30.0 "steel:strong"
 30.0 "novice:inexperience"
…
-45.1 "prince:charming"
-46.0 "heat:fire"
-52.0 "lipstick:red"
-56.9 "fizzy:pop"
-60.0 "man:tall"
-72.5 "flimsy:paper"
-72.5 "tall:man"
-76.5 "intellectual:professor"

 56.0 "loss:grief"
 48.0 "injury:pain"
 44.0 "disease:sickness"
 42.0 "explosion:damage"
 41.2 "accident:damage"
 34.5 "germs:sickness"
 30.0 "bath:cleanliness"
 26.0 "exercise:fitness"
 22.0 "tragedy:tears"
…
-22.0 "digging:hole"
-24.0 "sow:germinate"
-28.0 "yelling:anger"
-42.0 "headache:stress"
-48.0 "learning:study"
-62.0 "response:stimulus"
-66.0 "boredom:repetition"
-74.0 "sweat:run"

…

should be dissimilar

David Jurgens, Saif Mohammad, Peter D. Turney, Keith J. Holyoak: SemEval-2012 Task 2: Measuring Degrees of
Relational Similarity. SemEval@NAACL-HLT 2012: 356-364

Fine-tune BERT on SemEval-2012 Task 2 data

 66.0 "fire:hot"
 59.6 "villain:evil"
 53.8 "water:wet"
 43.1 "tycoon:wealthy"
 42.3 "snow:cold"
 35.3 "candy:sweet"
 32.0 "professor:intellectual"
 30.0 "steel:strong"
 30.0 "novice:inexperience"
…
-45.1 "prince:charming"
-46.0 "heat:fire"
-52.0 "lipstick:red"
-56.9 "fizzy:pop"
-60.0 "man:tall"
-72.5 "flimsy:paper"
-72.5 "tall:man"
-76.5 "intellectual:professor"

 56.0 "loss:grief"
 48.0 "injury:pain"
 44.0 "disease:sickness"
 42.0 "explosion:damage"
 41.2 "accident:damage"
 34.5 "germs:sickness"
 30.0 "bath:cleanliness"
 26.0 "exercise:fitness"
 22.0 "tragedy:tears"
…
-22.0 "digging:hole"
-24.0 "sow:germinate"
-28.0 "yelling:anger"
-42.0 "headache:stress"
-48.0 "learning:study"
-62.0 "response:stimulus"
-66.0 "boredom:repetition"
-74.0 "sweat:run"

…

should be dissimilar

David Jurgens, Saif Mohammad, Peter D. Turney, Keith J. Holyoak: SemEval-2012 Task 2: Measuring Degrees of
Relational Similarity. SemEval@NAACL-HLT 2012: 356-364

Training loss

we use for fine-tuning the LM; see Section 3.2.

AutoPrompt initializes the prompt as a fixed-
length template:

T = (z1, . . . , z⇡, [h], z⇡+1, . . . , z⇡+⌧ ,

[t], z⇡+⌧+1, . . . , z⇡+⌧+�) (1)

where ⇡, ⌧ , � are hyper-parameters which deter-
mine the length of the template. The tokens of the
form zi are called trigger tokens. These tokens are
initialized as <mask>. The method then iteratively
finds the best token to replace each mask, based on
the gradient of the task-specific loss function.3

P-tuning employs the same template initializa-
tion as AutoPrompt but its trigger tokens are newly
introduced special tokens with trainable embed-
dings ê1:⇡+⌧+� , which are learned using a task-
specific loss function while the LM’s weights are
frozen.

3.2 Fine-tuning the LM

To fine-tune the LM, we need training data and a
loss function. As training data, we assume that,
for a number of different relation types r, we have
access to examples of word pairs (h, t) that are
instances of that relation type. The loss function is
based on the following intuition: the embeddings
of word pairs that belong to the same relation type
should be closer together than the embeddings of
pairs that belong to different relations. In particular,
we use the triplet loss from Schroff et al. (2015) and
the classification loss from Reimers and Gurevych
(2019), both of which are based on this intuition.

Triplet Loss We draw a triplet from the relation
dataset by selecting an anchor pair a = (ha, ta), a
positive example p = (hp, tp) and a negative exam-
ple n = (hn, tn), i.e. we select word pairs a, p, n
such that a and p belong to the same relation type
while n belongs to a different relation type. Let
us write xa, xp, xn for the corresponding relation
embeddings. Each relation embedding is produced
by the same LM, which is trained to make the dis-
tance between xa and xp smaller than the distance
between xa and xn. Formally, this is accomplished
using the following triplet loss function:

Lt = max
�
0, kxa � xpk � kxa � xnk+ "

�

3We note that in most implementations of AutoPrompt the
vocabulary to sample trigger tokens is restricted to that of the
training data. However, given the nature of our training data
(i.e., pairs of words and not sentences), we consider the full
pre-trained LM’s vocabulary.

where " > 0 is the margin and k · k is the l2 norm.

Classification Loss Following SBERT (Reimers
and Gurevych, 2019), we use a classifier to predict
whether two word pairs belong to the same relation.
The classifier is jointly trained with the LM using
the negative log likelihood loss function:

Lc = � log(g(xa,xp))� log(1� g(xa,xn))

where

g(u,v) = sigmoid(W · [u� v � |v � u|]T)

with W 2 R3⇥d, u,v 2 Rd, | · | the element-wise
absolute difference, and � concatenation.

4 Experimental Setting

In this section, we explain our experimental setting
to train and evaluate RelBERT.

4.1 RelBERT Training

Dataset We use the platinum ratings from Se-
mEval 2012 Task 2 (Jurgens et al., 2012) as our
training dataset for RelBERT. This dataset cov-
ers 79 fine-grained semantic relations, which are
grouped in 10 categories. For each of the 79 re-
lations, the dataset contains a typicality score for
a number of word pairs (around 40 on average),
indicating to what extent the word pair is a proto-
typical instance of the relation. We treat the top 10
pairs (i.e. those with the highest typicality score)
as positive examples of the relation, and the bot-
tom 10 pairs as negative examples. We use 80% of
these positive and negative examples for training
RelBERT (i.e. learning the prompt and fine-tuning
the LM) and 20% for validation.

Constructing Training Triples We rely on three
different strategies for constructing training triples.
First, we obtain triples by selecting two positive
examples of a given relation type (i.e. from the top-
10 pairs) and one negative example (i.e. from the
bottom-10 pairs). We construct 450 such triples per
relation. Second, we construct triples by using two
positive examples of the relation and one positive
example from another relation (which is assumed
to correspond to a negative example). In particu-
lar, for efficiency, we use the anchors and positive
examples of the other triples from the same batch
as negative examples (while ensuring that these

Triplet loss

relation vector for some word pair a
relation vector for a word pair p, similar to a
relation vector for a word pair n, not similar to a

David Jurgens, Saif Mohammad, Peter D. Turney, Keith J. Holyoak: SemEval-2012 Task 2: Measuring Degrees of
Relational Similarity. SemEval@NAACL-HLT 2012: 356-364

Training loss

we use for fine-tuning the LM; see Section 3.2.

AutoPrompt initializes the prompt as a fixed-
length template:

T = (z1, . . . , z⇡, [h], z⇡+1, . . . , z⇡+⌧ ,

[t], z⇡+⌧+1, . . . , z⇡+⌧+�) (1)

where ⇡, ⌧ , � are hyper-parameters which deter-
mine the length of the template. The tokens of the
form zi are called trigger tokens. These tokens are
initialized as <mask>. The method then iteratively
finds the best token to replace each mask, based on
the gradient of the task-specific loss function.3

P-tuning employs the same template initializa-
tion as AutoPrompt but its trigger tokens are newly
introduced special tokens with trainable embed-
dings ê1:⇡+⌧+� , which are learned using a task-
specific loss function while the LM’s weights are
frozen.

3.2 Fine-tuning the LM

To fine-tune the LM, we need training data and a
loss function. As training data, we assume that,
for a number of different relation types r, we have
access to examples of word pairs (h, t) that are
instances of that relation type. The loss function is
based on the following intuition: the embeddings
of word pairs that belong to the same relation type
should be closer together than the embeddings of
pairs that belong to different relations. In particular,
we use the triplet loss from Schroff et al. (2015) and
the classification loss from Reimers and Gurevych
(2019), both of which are based on this intuition.

Triplet Loss We draw a triplet from the relation
dataset by selecting an anchor pair a = (ha, ta), a
positive example p = (hp, tp) and a negative exam-
ple n = (hn, tn), i.e. we select word pairs a, p, n
such that a and p belong to the same relation type
while n belongs to a different relation type. Let
us write xa, xp, xn for the corresponding relation
embeddings. Each relation embedding is produced
by the same LM, which is trained to make the dis-
tance between xa and xp smaller than the distance
between xa and xn. Formally, this is accomplished
using the following triplet loss function:

Lt = max
�
0, kxa � xpk � kxa � xnk+ "

�

3We note that in most implementations of AutoPrompt the
vocabulary to sample trigger tokens is restricted to that of the
training data. However, given the nature of our training data
(i.e., pairs of words and not sentences), we consider the full
pre-trained LM’s vocabulary.

where " > 0 is the margin and k · k is the l2 norm.

Classification Loss Following SBERT (Reimers
and Gurevych, 2019), we use a classifier to predict
whether two word pairs belong to the same relation.
The classifier is jointly trained with the LM using
the negative log likelihood loss function:

Lc = � log(g(xa,xp))� log(1� g(xa,xn))

where

g(u,v) = sigmoid(W · [u� v � |v � u|]T)

with W 2 R3⇥d, u,v 2 Rd, | · | the element-wise
absolute difference, and � concatenation.

4 Experimental Setting

In this section, we explain our experimental setting
to train and evaluate RelBERT.

4.1 RelBERT Training

Dataset We use the platinum ratings from Se-
mEval 2012 Task 2 (Jurgens et al., 2012) as our
training dataset for RelBERT. This dataset cov-
ers 79 fine-grained semantic relations, which are
grouped in 10 categories. For each of the 79 re-
lations, the dataset contains a typicality score for
a number of word pairs (around 40 on average),
indicating to what extent the word pair is a proto-
typical instance of the relation. We treat the top 10
pairs (i.e. those with the highest typicality score)
as positive examples of the relation, and the bot-
tom 10 pairs as negative examples. We use 80% of
these positive and negative examples for training
RelBERT (i.e. learning the prompt and fine-tuning
the LM) and 20% for validation.

Constructing Training Triples We rely on three
different strategies for constructing training triples.
First, we obtain triples by selecting two positive
examples of a given relation type (i.e. from the top-
10 pairs) and one negative example (i.e. from the
bottom-10 pairs). We construct 450 such triples per
relation. Second, we construct triples by using two
positive examples of the relation and one positive
example from another relation (which is assumed
to correspond to a negative example). In particu-
lar, for efficiency, we use the anchors and positive
examples of the other triples from the same batch
as negative examples (while ensuring that these

Triplet loss

Classification loss

we use for fine-tuning the LM; see Section 3.2.

AutoPrompt initializes the prompt as a fixed-
length template:

T = (z1, . . . , z⇡, [h], z⇡+1, . . . , z⇡+⌧ ,

[t], z⇡+⌧+1, . . . , z⇡+⌧+�) (1)

where ⇡, ⌧ , � are hyper-parameters which deter-
mine the length of the template. The tokens of the
form zi are called trigger tokens. These tokens are
initialized as <mask>. The method then iteratively
finds the best token to replace each mask, based on
the gradient of the task-specific loss function.3

P-tuning employs the same template initializa-
tion as AutoPrompt but its trigger tokens are newly
introduced special tokens with trainable embed-
dings ê1:⇡+⌧+� , which are learned using a task-
specific loss function while the LM’s weights are
frozen.

3.2 Fine-tuning the LM

To fine-tune the LM, we need training data and a
loss function. As training data, we assume that,
for a number of different relation types r, we have
access to examples of word pairs (h, t) that are
instances of that relation type. The loss function is
based on the following intuition: the embeddings
of word pairs that belong to the same relation type
should be closer together than the embeddings of
pairs that belong to different relations. In particular,
we use the triplet loss from Schroff et al. (2015) and
the classification loss from Reimers and Gurevych
(2019), both of which are based on this intuition.

Triplet Loss We draw a triplet from the relation
dataset by selecting an anchor pair a = (ha, ta), a
positive example p = (hp, tp) and a negative exam-
ple n = (hn, tn), i.e. we select word pairs a, p, n
such that a and p belong to the same relation type
while n belongs to a different relation type. Let
us write xa, xp, xn for the corresponding relation
embeddings. Each relation embedding is produced
by the same LM, which is trained to make the dis-
tance between xa and xp smaller than the distance
between xa and xn. Formally, this is accomplished
using the following triplet loss function:

Lt = max
�
0, kxa � xpk � kxa � xnk+ "

�

3We note that in most implementations of AutoPrompt the
vocabulary to sample trigger tokens is restricted to that of the
training data. However, given the nature of our training data
(i.e., pairs of words and not sentences), we consider the full
pre-trained LM’s vocabulary.

where " > 0 is the margin and k · k is the l2 norm.

Classification Loss Following SBERT (Reimers
and Gurevych, 2019), we use a classifier to predict
whether two word pairs belong to the same relation.
The classifier is jointly trained with the LM using
the negative log likelihood loss function:

Lc = � log(g(xa,xp))� log(1� g(xa,xn))

where

g(u,v) = sigmoid(W · [u� v � |v � u|]T)

with W 2 R3⇥d, u,v 2 Rd, | · | the element-wise
absolute difference, and � concatenation.

4 Experimental Setting

In this section, we explain our experimental setting
to train and evaluate RelBERT.

4.1 RelBERT Training

Dataset We use the platinum ratings from Se-
mEval 2012 Task 2 (Jurgens et al., 2012) as our
training dataset for RelBERT. This dataset cov-
ers 79 fine-grained semantic relations, which are
grouped in 10 categories. For each of the 79 re-
lations, the dataset contains a typicality score for
a number of word pairs (around 40 on average),
indicating to what extent the word pair is a proto-
typical instance of the relation. We treat the top 10
pairs (i.e. those with the highest typicality score)
as positive examples of the relation, and the bot-
tom 10 pairs as negative examples. We use 80% of
these positive and negative examples for training
RelBERT (i.e. learning the prompt and fine-tuning
the LM) and 20% for validation.

Constructing Training Triples We rely on three
different strategies for constructing training triples.
First, we obtain triples by selecting two positive
examples of a given relation type (i.e. from the top-
10 pairs) and one negative example (i.e. from the
bottom-10 pairs). We construct 450 such triples per
relation. Second, we construct triples by using two
positive examples of the relation and one positive
example from another relation (which is assumed
to correspond to a negative example). In particu-
lar, for efficiency, we use the anchors and positive
examples of the other triples from the same batch
as negative examples (while ensuring that these

we use for fine-tuning the LM; see Section 3.2.

AutoPrompt initializes the prompt as a fixed-
length template:

T = (z1, . . . , z⇡, [h], z⇡+1, . . . , z⇡+⌧ ,

[t], z⇡+⌧+1, . . . , z⇡+⌧+�) (1)

where ⇡, ⌧ , � are hyper-parameters which deter-
mine the length of the template. The tokens of the
form zi are called trigger tokens. These tokens are
initialized as <mask>. The method then iteratively
finds the best token to replace each mask, based on
the gradient of the task-specific loss function.3

P-tuning employs the same template initializa-
tion as AutoPrompt but its trigger tokens are newly
introduced special tokens with trainable embed-
dings ê1:⇡+⌧+� , which are learned using a task-
specific loss function while the LM’s weights are
frozen.

3.2 Fine-tuning the LM

To fine-tune the LM, we need training data and a
loss function. As training data, we assume that,
for a number of different relation types r, we have
access to examples of word pairs (h, t) that are
instances of that relation type. The loss function is
based on the following intuition: the embeddings
of word pairs that belong to the same relation type
should be closer together than the embeddings of
pairs that belong to different relations. In particular,
we use the triplet loss from Schroff et al. (2015) and
the classification loss from Reimers and Gurevych
(2019), both of which are based on this intuition.

Triplet Loss We draw a triplet from the relation
dataset by selecting an anchor pair a = (ha, ta), a
positive example p = (hp, tp) and a negative exam-
ple n = (hn, tn), i.e. we select word pairs a, p, n
such that a and p belong to the same relation type
while n belongs to a different relation type. Let
us write xa, xp, xn for the corresponding relation
embeddings. Each relation embedding is produced
by the same LM, which is trained to make the dis-
tance between xa and xp smaller than the distance
between xa and xn. Formally, this is accomplished
using the following triplet loss function:

Lt = max
�
0, kxa � xpk � kxa � xnk+ "

�

3We note that in most implementations of AutoPrompt the
vocabulary to sample trigger tokens is restricted to that of the
training data. However, given the nature of our training data
(i.e., pairs of words and not sentences), we consider the full
pre-trained LM’s vocabulary.

where " > 0 is the margin and k · k is the l2 norm.

Classification Loss Following SBERT (Reimers
and Gurevych, 2019), we use a classifier to predict
whether two word pairs belong to the same relation.
The classifier is jointly trained with the LM using
the negative log likelihood loss function:

Lc = � log(g(xa,xp))� log(1� g(xa,xn))

where

g(u,v) = sigmoid(W · [u� v � |v � u|]T)

with W 2 R3⇥d, u,v 2 Rd, | · | the element-wise
absolute difference, and � concatenation.

4 Experimental Setting

In this section, we explain our experimental setting
to train and evaluate RelBERT.

4.1 RelBERT Training

Dataset We use the platinum ratings from Se-
mEval 2012 Task 2 (Jurgens et al., 2012) as our
training dataset for RelBERT. This dataset cov-
ers 79 fine-grained semantic relations, which are
grouped in 10 categories. For each of the 79 re-
lations, the dataset contains a typicality score for
a number of word pairs (around 40 on average),
indicating to what extent the word pair is a proto-
typical instance of the relation. We treat the top 10
pairs (i.e. those with the highest typicality score)
as positive examples of the relation, and the bot-
tom 10 pairs as negative examples. We use 80% of
these positive and negative examples for training
RelBERT (i.e. learning the prompt and fine-tuning
the LM) and 20% for validation.

Constructing Training Triples We rely on three
different strategies for constructing training triples.
First, we obtain triples by selecting two positive
examples of a given relation type (i.e. from the top-
10 pairs) and one negative example (i.e. from the
bottom-10 pairs). We construct 450 such triples per
relation. Second, we construct triples by using two
positive examples of the relation and one positive
example from another relation (which is assumed
to correspond to a negative example). In particu-
lar, for efficiency, we use the anchors and positive
examples of the other triples from the same batch
as negative examples (while ensuring that these

Results
over, these approaches are a different nature, as
the aim of our work is to provide universal relation
embeddings instead of task-specific models.

5 Results

In this section, we present our main experimental
results, testing the relation embeddings learned by
RelBERT on analogy questions (Section 5.1) and
relation classification (Section 5.2).

5.1 Analogy Questions

Table 2 shows the accuracy on the analogy bench-
marks. The RelBERT models substantially outper-
form the baselines on all datasets, except for the
Google analogy dataset.9 Comparing the different
prompt generation approaches, we can see that, sur-
prisingly, the manual prompt consistently outper-
forms the automatically-learned prompt strategies.

On SAT†, RelBERT outperforms LRA, which
represents the state-of-the-art in the zero-shot set-
ting, i.e. in the setting where no training data from
the SAT dataset is used. RelBERT moreover out-
performs GPT-3 in the few-shot setting, despite not
using any training examples. In contrast, GPT-3
encodes a number of training examples as part of
the prompt.

It can furthermore be noted that the other two re-
lation embedding methods (i.e. pair2vec and REL-
ATIVE) perform poorly in this unsupervised task.
The analogical proportion score from Ushio et al.
(2021) also underperforms RelBERT, even when
tuned on dataset-specific tuning data.

5.2 Lexical Relation Classification

Table 3 summarizes the results of the lexical rela-
tion classification experiments, in terms of macro
and micro averaged F1 score. The RelBERT mod-
els achieve the best results on all datasets except
for BLESS and K&H+N, where the performance
of all models is rather close. We observe a particu-
larly large improvement over the word embedding
and SotA models on the EVALution dataset. When
comparing the different prompting strategies, we
again find that the manual prompts perform sur-
prisingly well, although the best results are now
obtained with learned prompts in a few cases.

9The Google analogy dataset has been shown to be biased
toward word similarity and therefore to be well suited to word
embeddings (Linzen, 2016; Rogers et al., 2017).

Model SAT† SAT U2 U4 Google BATS

Random 20.0 20.0 23.6 24.2 25.0 25.0
PMI 23.3 23.1 32.9 39.1 57.4 42.7
LRA 56.4 - - - - -
SuperSim 54.8 - - - - -
GPT-3 (zero) 53.7 - - - - -
GPT-3 (few) 65.2* - - - - -
RELATIVE 24.9 24.6 32.5 27.1 62.0 39.0
pair2vec 33.7 34.1 25.4 28.2 66.6 53.8
GloVe 48.9 47.8 46.5 39.8 96.0 68.7
FastText 49.7 47.8 43.0 40.7 96.6 72.0

Analogical Proportion Score
· GPT-2 41.4 35.9 41.2 44.9 80.4 63.5
· BERT 32.6 32.9 32.9 34.0 80.8 61.5
· RoBERTa 49.6 42.4 49.1 49.1 90.8 69.7

Analogical Proportion Score (tuned)
· GPT-2 57.8* 56.7* 50.9* 49.5* 95.2* 81.2*
· BERT 42.8* 41.8* 44.7* 41.2* 88.8* 67.9*
· RoBERTa 55.8* 53.4* 58.3* 57.4* 93.6* 78.4*

RelBERT
· Manual 69.5 70.6 66.2 65.3 92.4 78.8
· AutoPrompt 61.0 62.3 61.4 63.0 88.2 74.6
· P-tuning 54.0 55.5 58.3 55.8 83.4 72.1

Table 2: Test accuracy (%) on analogy datasets. Re-
sults marked with * are not directly comparable, as
they use a subset or the entire dataset to tune the model.
Results in bold represent the best accuracy excluding
those marked with *. Underlined results show the best
accuracy over all the models. Results in italics were
taken from the original papers.

6 Analysis

To better understand how relation embeddings are
learned, in this section we analyze the model’s
performance in more detail.

6.1 Training Data Overlap

In our main experiments, RelBERT is trained using
the SemEval 2012 Task 2 dataset. This dataset con-
tains a broad range of semantic relations, including
hypernymy and meronymy relations. This raises
an important question: Does RelBERT provide us
with a way to extract relational knowledge from the
parameters of the pre-trained LM, or is it learning
to construct relation embeddings from the triples
in the training set? What is of particular interest is
whether RelBERT is able to model types of rela-
tions that it has not seen during training. To answer
this question, we conduct an additional experiment
to evaluate RelBERT on lexical relation classifica-
tion, using a version that was trained without the re-
lations from the Class Inclusion category, which is
the high-level category in the SemEval dataset that

Results
Model BLESS CogALexV EVALution K&H+N ROOT09

macro micro macro micro macro micro macro micro macro micro

GloVe

cat 92.9 93.3 42.8 73.5 56.9 58.3 88.8 94.9 86.3 86.5
cat+dot 93.1 93.7 51.9 79.2 55.9 57.3 89.6 95.1 88.8 89.0
cat+dot+pair 91.8 92.6 56.4 81.1 58.1 59.6 89.4 95.7 89.2 89.4
cat+dot+rel 91.1 92.0 53.2 79.2 58.4 58.6 89.3 94.9 89.3 89.4
diff 91.0 91.5 39.2 70.8 55.6 56.9 87.0 94.4 85.9 86.3
diff+dot 92.3 92.9 50.6 78.5 56.5 57.9 88.3 94.8 88.6 88.9
diff+dot+pair 91.3 92.2 55.5 80.2 56.0 57.4 88.0 95.5 89.1 89.4
diff+dot+rel 91.1 91.8 52.8 78.6 56.9 57.9 87.4 94.6 87.7 88.1

FastText

cat 92.4 92.9 40.7 72.4 56.4 57.9 88.1 93.8 85.7 85.5
cat+dot 92.7 93.2 48.5 77.4 56.7 57.8 89.1 94.0 88.2 88.5
cat+dot+pair 90.9 91.5 53.0 79.3 56.1 58.2 88.3 94.3 87.7 87.8
cat+dot+rel 91.4 91.9 50.6 76.8 57.9 59.1 86.9 93.5 87.1 87.4
diff 90.7 91.2 39.7 70.2 53.2 55.5 85.8 93.3 85.5 86.0
diff+dot 92.3 92.9 49.1 77.8 55.2 57.4 86.5 93.6 88.5 88.9
diff+dot+pair 90.0 90.8 53.9 79.0 55.8 57.8 86.6 94.2 87.7 88.1
diff+dot+rel 90.6 91.3 53.6 78.2 57.1 58.0 86.3 93.4 86.9 87.4

RelBERT
Manual 91.7 92.1 71.2 87.0 68.4 69.6 88.0 96.2 90.9 91.0
AutoPrompt 91.9 92.4 68.5 85.1 69.5 70.5 91.3 97.1 90.0 90.3
P-tuning 91.3 91.8 67.8 84.9 69.1 70.2 88.5 96.3 89.8 89.9

SotA LexNET - 89.3 - - - 60.0 - 98.5 - 81.3
SphereRE - 93.8 - - - 62.0 - 99.0 - 86.1

Table 3: Macro/micro F1 score (%) for lexical relation classification.

BLESS CogALex EVAL K&H+N ROOT09

rand 93.7 (+0.3) 94.3 (-0.2) - 97.9 (+0.2) 91.2 (-0.1)
mero 89.8 (+1.4) 72.9 (+2.7) 69.2 (+1.9) 74.5 (+5.4) -
event 86.5 (-0.3) - - - -
hyp 94.1 (+0.8) 60.9 (-0.7) 61.7 (-1.5) 93.5 (+5.0) 83.0 (-0.4)
cohyp 96.4 (+0.3) - - 97.8 (+1.2) 97.4 (-0.5)
attr 92.6 (+0.3) - 84.7 (+1.6) - -
poss - - 67.1 (-0.2) - -
ant - 76.8 (-2.6) 81.3 (-0.9) - -
syn - 49.9 (-0.6) 53.6 (+2.7) - -

macro 92.2 (+0.5) 71.0 (-0.2) 69.3 (+0.9) 90.9 (+2.9) 90.5 (-0.4)
micro 92.5 (+0.4) 86.9 (-0.1) 70.2 (+0.6) 97.2 (+1.0) 90.7 (-0.3)

Table 4: Per-class F1 score of RelBERT trained without
hypernymy relations and the absolute difference with
respect to the original model (parentheses), along with
the macro and micro averaged F1 for each dataset (%).

includes the hypernymy relation. Hypernymy is of
particular interest, as it can be found across all the
considered lexical relation classification datasets,
which is itself a reflection of its central importance
in lexical semantics. In Table 4, we report the dif-
ference in performance compared to the original
RelBERT model (i.e. the model that was fine-tuned
on the full SemEval training set). As can be seen,
the overall changes in performance are small, and
the new version actually outperforms the original
RelBERT model on a few datasets. In particular,
hypernymy is still modelled well, confirming that
RelBERT is able to generalize to unseen relations.

Model Google BATS
Mor Sem Mor Sem Lex

FastText 95.4 98.1 90.4 71.1 33.8

Manual 89.8 95.8 87.0 66.2 75.1
AutoPrompt 90.5 85.1 85.3 59.8 68.0
P-tuning 87.4 78.1 82.9 60.9 61.8

Table 5: Test accuracy for the high-level categories of
BATS and Google, comparing FastText and RelBERT.

As a further analysis, Table 5 shows a break-
down of the Google and BATS analogy results,
showing the average performance on each of the
top-level categories from these datasets.10 While
RelBERT is outperformed by FastText on the mor-
phological relations, it should be noted that the
differences are small, while such relations are of a
very different nature than those from the SemEval
dataset. This confirms that RelBERT is able to
model a broad range of relations, although it can
be expected that better results would be possible
by including task-specific training data into the
fine-tuning process (e.g. including morphological
relations for tasks where such relations matter).

10A full break-down showing the results for individual rela-
tions is provided in the appendix.

Results

Model BLESS CogALexV EVALution K&H+N ROOT09
macro micro macro micro macro micro macro micro macro micro

GloVe

cat 92.9 93.3 42.8 73.5 56.9 58.3 88.8 94.9 86.3 86.5
cat+dot 93.1 93.7 51.9 79.2 55.9 57.3 89.6 95.1 88.8 89.0
cat+dot+pair 91.8 92.6 56.4 81.1 58.1 59.6 89.4 95.7 89.2 89.4
cat+dot+rel 91.1 92.0 53.2 79.2 58.4 58.6 89.3 94.9 89.3 89.4
diff 91.0 91.5 39.2 70.8 55.6 56.9 87.0 94.4 85.9 86.3
diff+dot 92.3 92.9 50.6 78.5 56.5 57.9 88.3 94.8 88.6 88.9
diff+dot+pair 91.3 92.2 55.5 80.2 56.0 57.4 88.0 95.5 89.1 89.4
diff+dot+rel 91.1 91.8 52.8 78.6 56.9 57.9 87.4 94.6 87.7 88.1

FastText

cat 92.4 92.9 40.7 72.4 56.4 57.9 88.1 93.8 85.7 85.5
cat+dot 92.7 93.2 48.5 77.4 56.7 57.8 89.1 94.0 88.2 88.5
cat+dot+pair 90.9 91.5 53.0 79.3 56.1 58.2 88.3 94.3 87.7 87.8
cat+dot+rel 91.4 91.9 50.6 76.8 57.9 59.1 86.9 93.5 87.1 87.4
diff 90.7 91.2 39.7 70.2 53.2 55.5 85.8 93.3 85.5 86.0
diff+dot 92.3 92.9 49.1 77.8 55.2 57.4 86.5 93.6 88.5 88.9
diff+dot+pair 90.0 90.8 53.9 79.0 55.8 57.8 86.6 94.2 87.7 88.1
diff+dot+rel 90.6 91.3 53.6 78.2 57.1 58.0 86.3 93.4 86.9 87.4

RelBERT
Manual 91.7 92.1 71.2 87.0 68.4 69.6 88.0 96.2 90.9 91.0
AutoPrompt 91.9 92.4 68.5 85.1 69.5 70.5 91.3 97.1 90.0 90.3
P-tuning 91.3 91.8 67.8 84.9 69.1 70.2 88.5 96.3 89.8 89.9

SotA LexNET - 89.3 - - - 60.0 - 98.5 - 81.3
SphereRE - 93.8 - - - 62.0 - 99.0 - 86.1

Table 3: Macro/micro F1 score (%) for lexical relation classification.

BLESS CogALex EVAL K&H+N ROOT09

rand 93.7 (+0.3) 94.3 (-0.2) - 97.9 (+0.2) 91.2 (-0.1)
mero 89.8 (+1.4) 72.9 (+2.7) 69.2 (+1.9) 74.5 (+5.4) -
event 86.5 (-0.3) - - - -
hyp 94.1 (+0.8) 60.9 (-0.7) 61.7 (-1.5) 93.5 (+5.0) 83.0 (-0.4)
cohyp 96.4 (+0.3) - - 97.8 (+1.2) 97.4 (-0.5)
attr 92.6 (+0.3) - 84.7 (+1.6) - -
poss - - 67.1 (-0.2) - -
ant - 76.8 (-2.6) 81.3 (-0.9) - -
syn - 49.9 (-0.6) 53.6 (+2.7) - -

macro 92.2 (+0.5) 71.0 (-0.2) 69.3 (+0.9) 90.9 (+2.9) 90.5 (-0.4)
micro 92.5 (+0.4) 86.9 (-0.1) 70.2 (+0.6) 97.2 (+1.0) 90.7 (-0.3)

Table 4: Per-class F1 score of RelBERT trained without
hypernymy relations and the absolute difference with
respect to the original model (parentheses), along with
the macro and micro averaged F1 for each dataset (%).

includes the hypernymy relation. Hypernymy is of
particular interest, as it can be found across all the
considered lexical relation classification datasets,
which is itself a reflection of its central importance
in lexical semantics. In Table 4, we report the dif-
ference in performance compared to the original
RelBERT model (i.e. the model that was fine-tuned
on the full SemEval training set). As can be seen,
the overall changes in performance are small, and
the new version actually outperforms the original
RelBERT model on a few datasets. In particular,
hypernymy is still modelled well, confirming that
RelBERT is able to generalize to unseen relations.

Model Google BATS
Mor Sem Mor Sem Lex

FastText 95.4 98.1 90.4 71.1 33.8

Manual 89.8 95.8 87.0 66.2 75.1
AutoPrompt 90.5 85.1 85.3 59.8 68.0
P-tuning 87.4 78.1 82.9 60.9 61.8

Table 5: Test accuracy for the high-level categories of
BATS and Google, comparing FastText and RelBERT.

As a further analysis, Table 5 shows a break-
down of the Google and BATS analogy results,
showing the average performance on each of the
top-level categories from these datasets.10 While
RelBERT is outperformed by FastText on the mor-
phological relations, it should be noted that the
differences are small, while such relations are of a
very different nature than those from the SemEval
dataset. This confirms that RelBERT is able to
model a broad range of relations, although it can
be expected that better results would be possible
by including task-specific training data into the
fine-tuning process (e.g. including morphological
relations for tasks where such relations matter).

10A full break-down showing the results for individual rela-
tions is provided in the appendix.

Model was trained without any hypernymy training data

Examples

Category Target Nearest Neighbors RelBERT Nearest Neighbors RELATIVE

Commonsense

barista:coffee baker:bread, brewer:beer, bartender:cocktail, winemaker:wine, bartender:drink, baker:cake venue:bar, restaurant:kitchen, restaurant:grill, nightclub:open, pub:bar, night:concert
restaurant:waitress restaurant:waiter, diner:waitress, bar:bartender, hospital:nurse, courthouse:clerk, office:clerk coincidentally:first, ironically:first, ironically:name, notably:three, however:new, instance:character
car:garage car:pit, plane:hangar, auto:garage, baby:crib, yacht:harbour, aircraft:hangar shelter:house, elevator:building, worker:mine, worker:factory, plane:hangar, horse:stable
ice:melt snow:melt, glacier:melt, ice:drift, crust:melt, polar ice:melt, ice:thaw glacier:melt, snow:melt, water:freeze, crack:form, ice:surface, ice:freeze
dolphin:swim squid:swim, salmon:swim, shark:swim, fish:swim, horse:run, frog:leap fisherman:fish, fisherman:catch, must:protect, diver:underwater, dog:human, scheme:make
flower:fragrant orchid:fragrant, cluster:fragrant, jewel:precious, jewel:valuable, soil:permeable, vegetation:abundant flower:greenish, flower:white, flower:yellowish, flower:creamy, flower:pale yellow, flower:arrange
coconut:milk coconut:oil, goat:milk, grape:juice, palm:oil, olive:oil, camel:milk dry:powder, mix:sugar, candy:chocolate, cook:fry, butter:oil, milk:coffee
bag:plastic bottle:plastic, bag:leather, container:plastic, box:plastic, jug:glass, bottle:glass tube:glass, bottle:plastic, typically:plastic, frame:steel, shoe:leather, wire:metal
duck:duckling chicken:chick, pig:piglet, cat:kitten, ox:calf, butterfly:larvae, bear:cub adult:young, worker:queen, queen:worker, bird:fly, chick:adult, female:mat

Gender man:woman men:women, male:female, father:mother, boy:girl, hero:heroine, king:queen man:boy, woman:child, child:youth, officer:crew, bride:groom, child:teen

Antonymy cooked:raw raw:cooked, regulated:unregulated, sober:drunk, loaded:unloaded, armed:unarmed, published:unpublished annual:biennial, raw:cook, herb:subshrub, aquatic:semi, shrub:small, fry:grill
normal:abnormal ordinary:unusual, usual:unusual, acceptable:unacceptable, stable:unstable, rational:irrational, legal:illegal acute:chronic, mouse:human, negative:positive, fat:muscle, cell:tissue, motor:sensory

Meronymy

helicopter:rotor helicopter:rotor blades, helicopter:wing, bicycle:wheel, motorcycle:wheel, airplane:engine, plane:engine aircraft:engine, engine:crankshaft, landing gear:wheel, engine:camshaft, rotor:blade, aircraft:wing
bat:wing butterfly:wing, eagle:wing, angel:wing, cat:paw, lion:wings, fly:wing mouse:tail, dog:like, dragon:like, human:robot, leopard:spot, cat:like
beer:alcohol wine:alcohol, cider:alcohol, soda:sugar, beer:liquor, beer:malt, lager:alcoho steel:carbon, cider:alcohol, humidity:average, rate:average, household:non, consume:beer
oxygen:atmosphere helium:atmosphere, hydrogen:atmosphere, nitrogen:atmosphere, methane:atmosphere, carbon:atmosphere carbon dioxide:atmosphere, cloud:atmosphere, methane:atmosphere, nitrogen:soil, gas:atmosphere

Hypernymy
chihuahua:dog dachshund:dog, poodle:dog, terrier:dog, chinchilla:rodent, macaque:monkey, dalmatian:dog julie:katy, tench:pike, catfish:pike, sunfish:perch, salmonid:salmon, raw:marinate
pelican:bird toucan:bird, puffin:bird, egret:bird, peacock:bird, grouse:bird, pigeon:bird drinking:contaminate, drinking:source, pelican:distinctive, boiling:pour, aquifer:table, fresh:source
tennis:sport hockey:sport, soccer:sport, volleyball:sport, cricket:sport, golf:sport, football:sport hockey:sport, golf:sport, badminton:sport, boxing:sport, rowing:sport, volleyball:sport

Morphology
dog:dogs cat:cats, horse:horses, pig:pigs, rat:rats, wolf:wolves, monkey:monkeys shepherd:dog, landrace:breed, like:dog, farm:breed, breed:animal, captive:release
tall:tallest strong:strongest, short:shortest, smart:smartest, weak:weakest, big:biggest, small:smallest rank:world, summit:nato, redistricting:district, delegation:congress, debate:congress
spy:espionage pirate:piracy, robber:robbery, lobbyist:lobbying, scout:scouting, terrorist:terrorism, witch:witchcraft group:call, crime:criminal, action:involve, cop:police, action:one, group:make

Table 13: Nearest neighbors of selected word pairs, in terms of cosine similarity between RelBERT embeddings. Candidate word pairs are taken from the RELATIVE pair
vocabulary.

Category Target Nearest Neighbors RelBERT Nearest Neighbors RELATIVE

Commonsense

barista:coffee baker:bread, brewer:beer, bartender:cocktail, winemaker:wine, bartender:drink, baker:cake venue:bar, restaurant:kitchen, restaurant:grill, nightclub:open, pub:bar, night:concert
restaurant:waitress restaurant:waiter, diner:waitress, bar:bartender, hospital:nurse, courthouse:clerk, office:clerk coincidentally:first, ironically:first, ironically:name, notably:three, however:new, instance:character
car:garage car:pit, plane:hangar, auto:garage, baby:crib, yacht:harbour, aircraft:hangar shelter:house, elevator:building, worker:mine, worker:factory, plane:hangar, horse:stable
ice:melt snow:melt, glacier:melt, ice:drift, crust:melt, polar ice:melt, ice:thaw glacier:melt, snow:melt, water:freeze, crack:form, ice:surface, ice:freeze
dolphin:swim squid:swim, salmon:swim, shark:swim, fish:swim, horse:run, frog:leap fisherman:fish, fisherman:catch, must:protect, diver:underwater, dog:human, scheme:make
flower:fragrant orchid:fragrant, cluster:fragrant, jewel:precious, jewel:valuable, soil:permeable, vegetation:abundant flower:greenish, flower:white, flower:yellowish, flower:creamy, flower:pale yellow, flower:arrange
coconut:milk coconut:oil, goat:milk, grape:juice, palm:oil, olive:oil, camel:milk dry:powder, mix:sugar, candy:chocolate, cook:fry, butter:oil, milk:coffee
bag:plastic bottle:plastic, bag:leather, container:plastic, box:plastic, jug:glass, bottle:glass tube:glass, bottle:plastic, typically:plastic, frame:steel, shoe:leather, wire:metal
duck:duckling chicken:chick, pig:piglet, cat:kitten, ox:calf, butterfly:larvae, bear:cub adult:young, worker:queen, queen:worker, bird:fly, chick:adult, female:mat

Gender man:woman men:women, male:female, father:mother, boy:girl, hero:heroine, king:queen man:boy, woman:child, child:youth, officer:crew, bride:groom, child:teen

Antonymy cooked:raw raw:cooked, regulated:unregulated, sober:drunk, loaded:unloaded, armed:unarmed, published:unpublished annual:biennial, raw:cook, herb:subshrub, aquatic:semi, shrub:small, fry:grill
normal:abnormal ordinary:unusual, usual:unusual, acceptable:unacceptable, stable:unstable, rational:irrational, legal:illegal acute:chronic, mouse:human, negative:positive, fat:muscle, cell:tissue, motor:sensory

Meronymy

helicopter:rotor helicopter:rotor blades, helicopter:wing, bicycle:wheel, motorcycle:wheel, airplane:engine, plane:engine aircraft:engine, engine:crankshaft, landing gear:wheel, engine:camshaft, rotor:blade, aircraft:wing
bat:wing butterfly:wing, eagle:wing, angel:wing, cat:paw, lion:wings, fly:wing mouse:tail, dog:like, dragon:like, human:robot, leopard:spot, cat:like
beer:alcohol wine:alcohol, cider:alcohol, soda:sugar, beer:liquor, beer:malt, lager:alcoho steel:carbon, cider:alcohol, humidity:average, rate:average, household:non, consume:beer
oxygen:atmosphere helium:atmosphere, hydrogen:atmosphere, nitrogen:atmosphere, methane:atmosphere, carbon:atmosphere carbon dioxide:atmosphere, cloud:atmosphere, methane:atmosphere, nitrogen:soil, gas:atmosphere

Hypernymy
chihuahua:dog dachshund:dog, poodle:dog, terrier:dog, chinchilla:rodent, macaque:monkey, dalmatian:dog julie:katy, tench:pike, catfish:pike, sunfish:perch, salmonid:salmon, raw:marinate
pelican:bird toucan:bird, puffin:bird, egret:bird, peacock:bird, grouse:bird, pigeon:bird drinking:contaminate, drinking:source, pelican:distinctive, boiling:pour, aquifer:table, fresh:source
tennis:sport hockey:sport, soccer:sport, volleyball:sport, cricket:sport, golf:sport, football:sport hockey:sport, golf:sport, badminton:sport, boxing:sport, rowing:sport, volleyball:sport

Morphology
dog:dogs cat:cats, horse:horses, pig:pigs, rat:rats, wolf:wolves, monkey:monkeys shepherd:dog, landrace:breed, like:dog, farm:breed, breed:animal, captive:release
tall:tallest strong:strongest, short:shortest, smart:smartest, weak:weakest, big:biggest, small:smallest rank:world, summit:nato, redistricting:district, delegation:congress, debate:congress
spy:espionage pirate:piracy, robber:robbery, lobbyist:lobbying, scout:scouting, terrorist:terrorism, witch:witchcraft group:call, crime:criminal, action:involve, cop:police, action:one, group:make

Table 13: Nearest neighbors of selected word pairs, in terms of cosine similarity between RelBERT embeddings. Candidate word pairs are taken from the RELATIVE pair
vocabulary.

Examples

Examples

Category Target Nearest Neighbors RelBERT Nearest Neighbors RELATIVE

Commonsense

barista:coffee baker:bread, brewer:beer, bartender:cocktail, winemaker:wine, bartender:drink, baker:cake venue:bar, restaurant:kitchen, restaurant:grill, nightclub:open, pub:bar, night:concert
restaurant:waitress restaurant:waiter, diner:waitress, bar:bartender, hospital:nurse, courthouse:clerk, office:clerk coincidentally:first, ironically:first, ironically:name, notably:three, however:new, instance:character
car:garage car:pit, plane:hangar, auto:garage, baby:crib, yacht:harbour, aircraft:hangar shelter:house, elevator:building, worker:mine, worker:factory, plane:hangar, horse:stable
ice:melt snow:melt, glacier:melt, ice:drift, crust:melt, polar ice:melt, ice:thaw glacier:melt, snow:melt, water:freeze, crack:form, ice:surface, ice:freeze
dolphin:swim squid:swim, salmon:swim, shark:swim, fish:swim, horse:run, frog:leap fisherman:fish, fisherman:catch, must:protect, diver:underwater, dog:human, scheme:make
flower:fragrant orchid:fragrant, cluster:fragrant, jewel:precious, jewel:valuable, soil:permeable, vegetation:abundant flower:greenish, flower:white, flower:yellowish, flower:creamy, flower:pale yellow, flower:arrange
coconut:milk coconut:oil, goat:milk, grape:juice, palm:oil, olive:oil, camel:milk dry:powder, mix:sugar, candy:chocolate, cook:fry, butter:oil, milk:coffee
bag:plastic bottle:plastic, bag:leather, container:plastic, box:plastic, jug:glass, bottle:glass tube:glass, bottle:plastic, typically:plastic, frame:steel, shoe:leather, wire:metal
duck:duckling chicken:chick, pig:piglet, cat:kitten, ox:calf, butterfly:larvae, bear:cub adult:young, worker:queen, queen:worker, bird:fly, chick:adult, female:mat

Gender man:woman men:women, male:female, father:mother, boy:girl, hero:heroine, king:queen man:boy, woman:child, child:youth, officer:crew, bride:groom, child:teen

Antonymy cooked:raw raw:cooked, regulated:unregulated, sober:drunk, loaded:unloaded, armed:unarmed, published:unpublished annual:biennial, raw:cook, herb:subshrub, aquatic:semi, shrub:small, fry:grill
normal:abnormal ordinary:unusual, usual:unusual, acceptable:unacceptable, stable:unstable, rational:irrational, legal:illegal acute:chronic, mouse:human, negative:positive, fat:muscle, cell:tissue, motor:sensory

Meronymy

helicopter:rotor helicopter:rotor blades, helicopter:wing, bicycle:wheel, motorcycle:wheel, airplane:engine, plane:engine aircraft:engine, engine:crankshaft, landing gear:wheel, engine:camshaft, rotor:blade, aircraft:wing
bat:wing butterfly:wing, eagle:wing, angel:wing, cat:paw, lion:wings, fly:wing mouse:tail, dog:like, dragon:like, human:robot, leopard:spot, cat:like
beer:alcohol wine:alcohol, cider:alcohol, soda:sugar, beer:liquor, beer:malt, lager:alcoho steel:carbon, cider:alcohol, humidity:average, rate:average, household:non, consume:beer
oxygen:atmosphere helium:atmosphere, hydrogen:atmosphere, nitrogen:atmosphere, methane:atmosphere, carbon:atmosphere carbon dioxide:atmosphere, cloud:atmosphere, methane:atmosphere, nitrogen:soil, gas:atmosphere

Hypernymy
chihuahua:dog dachshund:dog, poodle:dog, terrier:dog, chinchilla:rodent, macaque:monkey, dalmatian:dog julie:katy, tench:pike, catfish:pike, sunfish:perch, salmonid:salmon, raw:marinate
pelican:bird toucan:bird, puffin:bird, egret:bird, peacock:bird, grouse:bird, pigeon:bird drinking:contaminate, drinking:source, pelican:distinctive, boiling:pour, aquifer:table, fresh:source
tennis:sport hockey:sport, soccer:sport, volleyball:sport, cricket:sport, golf:sport, football:sport hockey:sport, golf:sport, badminton:sport, boxing:sport, rowing:sport, volleyball:sport

Morphology
dog:dogs cat:cats, horse:horses, pig:pigs, rat:rats, wolf:wolves, monkey:monkeys shepherd:dog, landrace:breed, like:dog, farm:breed, breed:animal, captive:release
tall:tallest strong:strongest, short:shortest, smart:smartest, weak:weakest, big:biggest, small:smallest rank:world, summit:nato, redistricting:district, delegation:congress, debate:congress
spy:espionage pirate:piracy, robber:robbery, lobbyist:lobbying, scout:scouting, terrorist:terrorism, witch:witchcraft group:call, crime:criminal, action:involve, cop:police, action:one, group:make

Table 13: Nearest neighbors of selected word pairs, in terms of cosine similarity between RelBERT embeddings. Candidate word pairs are taken from the RELATIVE pair
vocabulary.

Examples

Category Target Nearest Neighbors RelBERT Nearest Neighbors RELATIVE

Commonsense

barista:coffee baker:bread, brewer:beer, bartender:cocktail, winemaker:wine, bartender:drink, baker:cake venue:bar, restaurant:kitchen, restaurant:grill, nightclub:open, pub:bar, night:concert
restaurant:waitress restaurant:waiter, diner:waitress, bar:bartender, hospital:nurse, courthouse:clerk, office:clerk coincidentally:first, ironically:first, ironically:name, notably:three, however:new, instance:character
car:garage car:pit, plane:hangar, auto:garage, baby:crib, yacht:harbour, aircraft:hangar shelter:house, elevator:building, worker:mine, worker:factory, plane:hangar, horse:stable
ice:melt snow:melt, glacier:melt, ice:drift, crust:melt, polar ice:melt, ice:thaw glacier:melt, snow:melt, water:freeze, crack:form, ice:surface, ice:freeze
dolphin:swim squid:swim, salmon:swim, shark:swim, fish:swim, horse:run, frog:leap fisherman:fish, fisherman:catch, must:protect, diver:underwater, dog:human, scheme:make
flower:fragrant orchid:fragrant, cluster:fragrant, jewel:precious, jewel:valuable, soil:permeable, vegetation:abundant flower:greenish, flower:white, flower:yellowish, flower:creamy, flower:pale yellow, flower:arrange
coconut:milk coconut:oil, goat:milk, grape:juice, palm:oil, olive:oil, camel:milk dry:powder, mix:sugar, candy:chocolate, cook:fry, butter:oil, milk:coffee
bag:plastic bottle:plastic, bag:leather, container:plastic, box:plastic, jug:glass, bottle:glass tube:glass, bottle:plastic, typically:plastic, frame:steel, shoe:leather, wire:metal
duck:duckling chicken:chick, pig:piglet, cat:kitten, ox:calf, butterfly:larvae, bear:cub adult:young, worker:queen, queen:worker, bird:fly, chick:adult, female:mat

Gender man:woman men:women, male:female, father:mother, boy:girl, hero:heroine, king:queen man:boy, woman:child, child:youth, officer:crew, bride:groom, child:teen

Antonymy cooked:raw raw:cooked, regulated:unregulated, sober:drunk, loaded:unloaded, armed:unarmed, published:unpublished annual:biennial, raw:cook, herb:subshrub, aquatic:semi, shrub:small, fry:grill
normal:abnormal ordinary:unusual, usual:unusual, acceptable:unacceptable, stable:unstable, rational:irrational, legal:illegal acute:chronic, mouse:human, negative:positive, fat:muscle, cell:tissue, motor:sensory

Meronymy

helicopter:rotor helicopter:rotor blades, helicopter:wing, bicycle:wheel, motorcycle:wheel, airplane:engine, plane:engine aircraft:engine, engine:crankshaft, landing gear:wheel, engine:camshaft, rotor:blade, aircraft:wing
bat:wing butterfly:wing, eagle:wing, angel:wing, cat:paw, lion:wings, fly:wing mouse:tail, dog:like, dragon:like, human:robot, leopard:spot, cat:like
beer:alcohol wine:alcohol, cider:alcohol, soda:sugar, beer:liquor, beer:malt, lager:alcoho steel:carbon, cider:alcohol, humidity:average, rate:average, household:non, consume:beer
oxygen:atmosphere helium:atmosphere, hydrogen:atmosphere, nitrogen:atmosphere, methane:atmosphere, carbon:atmosphere carbon dioxide:atmosphere, cloud:atmosphere, methane:atmosphere, nitrogen:soil, gas:atmosphere

Hypernymy
chihuahua:dog dachshund:dog, poodle:dog, terrier:dog, chinchilla:rodent, macaque:monkey, dalmatian:dog julie:katy, tench:pike, catfish:pike, sunfish:perch, salmonid:salmon, raw:marinate
pelican:bird toucan:bird, puffin:bird, egret:bird, peacock:bird, grouse:bird, pigeon:bird drinking:contaminate, drinking:source, pelican:distinctive, boiling:pour, aquifer:table, fresh:source
tennis:sport hockey:sport, soccer:sport, volleyball:sport, cricket:sport, golf:sport, football:sport hockey:sport, golf:sport, badminton:sport, boxing:sport, rowing:sport, volleyball:sport

Morphology
dog:dogs cat:cats, horse:horses, pig:pigs, rat:rats, wolf:wolves, monkey:monkeys shepherd:dog, landrace:breed, like:dog, farm:breed, breed:animal, captive:release
tall:tallest strong:strongest, short:shortest, smart:smartest, weak:weakest, big:biggest, small:smallest rank:world, summit:nato, redistricting:district, delegation:congress, debate:congress
spy:espionage pirate:piracy, robber:robbery, lobbyist:lobbying, scout:scouting, terrorist:terrorism, witch:witchcraft group:call, crime:criminal, action:involve, cop:police, action:one, group:make

Table 13: Nearest neighbors of selected word pairs, in terms of cosine similarity between RelBERT embeddings. Candidate word pairs are taken from the RELATIVE pair
vocabulary.

