Modelling word analogies with language models

Steven Schockaert

School of Computer Science \& Informatics
Cardiff University, Cardiff, UK
SchockaertS1@cardiff.ac.uk
http://users.cs.cf.ac.uk/S.Schockaert
UNIVERSITY

Word vectors and analogies

T. Mikolov. Distributed representations of words and phrases and their compositionality. NIPS 2013

Why do vector differences model analogies?

Typical context words of "France": arrondissement, renaissance, ...

Typical context words of "capital": embassy, palace, ...

Typical context words of "Paris": arrondissement, embassy, palace, ...

Why do vector differences model analogies?

Typical context words of France: arrondissement, renaissance, ...

Typical context words of capital cities: embassy, palace, ...

Typical context words of Paris: arrondissement, embassy, palace, ...

Why do vector differences model analogies?

Why do vector differences model analogies?

Abstract analogies

Query:		word:language $)$
Candidates:	(1)	paint:portrait
	(2)	poetry:rhythm
	(3)	note:music
	(4)	tale:story
	(5)	week:year

Abstract analogies

Query:		word:language
Candidates:	(1)	paint:portrait
	(2)	poetry:rhythm
	$\mathbf{(3)}$	note:music
	(4)	tale:story
	(5)	week:year

Accuracy

- FastText: 49.7
- GloVe: 48.9
- Word2Vec: 42.8
- Latent Relational Analysis: 56.4

Contextualised Language Models

Contextualised Language Models

Contextualised Language Models

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL-HLT 2019: 4171-4186

Language Models as Knowledge Bases

Paris

manually constructed prompt

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H. Miller: Language Models as Knowledge Bases? EMNLP/IJCNLP (1) 2019: 2463-2473

Prompt Engineering

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, Sameer Singh: AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. EMNLP (1) 2020: 4222-4235

BERT is to NLP what AlexNet is to CV:
 Can Pre-Trained Language Models Identify Analogies?

Asahi Ushio, Luis Espinosa-Anke, Steven Schockaert, Jose Camacho-Collados
Cardiff NLP, School of Computer Science and Informatics
Cardiff University, United Kingdom
\{UshioA, Espinosa-AnkeL,SchockaertS1, CamachoColladosJ\}@cardiff.ac.uk

Can language models recognise analogies?

Word is to language what note is to music

Scoring functions: perplexity

How "fluent" are the following sentences:
word is to language what paint is to portrait word is to language what poetry is to rhythm word is to language what note is to music word is to language what tale is to story word is to language what week is to year

$$
\exp \left(-\sum_{j=1}^{m} \log P\left(x_{j} \mid x_{j-1}\right)\right)
$$

Scoring functions: PMI-based

How much more likely is "music" as the prediction in:
word is to language what note is to [MASK]
compared to:
word is to language what [MASK] is to [MASK]

$$
\log P\left(t_{i} \mid h_{i}, h_{q}, t_{q}\right)-\alpha \log P\left(t_{i} \mid h_{q}, t_{q}\right)
$$

Scoring functions: PMI-based

Compare the probability of the joint prediction (note,music) in: word is to language what [MASK] is to [MASK]
to the probabilities of the individual predictions of note and music, respectively in:
word is to language what [MASK] is to [MASK]
word is to language what [MASK] is to [MASK]
$\log P\left(t_{i}, h_{i} \mid h_{q}, t_{q}\right)-\alpha_{t} \log P\left(t_{i} \mid h_{q}, t_{q}\right)-\alpha_{h} \log P\left(h_{i} \mid h_{q}, t_{q}\right)$

Results

Automatically learned prompt, optimised scoring function

Results
abstract
analogies

	Model	Score	Tuned	SAT	U2	U4	Google BATS		$\frac{\text { Avg }}{48.4}$	
BERT		$s_{P P L}$		32.9	32.9	34.0	80.8	61.5		
		\checkmark	39.8	41.7	41.0	86.8	67.9	55.4		
				27.0	32.0	31.2	74.0	59.1	44.7	
		$s_{\text {PMI }}$	\checkmark	40.4	42.5	27.8	87.0	68.1	53.2	
		$s_{m P P L}$	\checkmark	41.8	44.7	41.2	88.8	67.9	56.9	
\sum	GPT-2		$s_{P P L}$		35.9	41.2	44.9	80.4	63.5	53.2
		\checkmark		50.4	48.7	51.2	93.2	75.9	63.9	
		$s_{P M I}$		34.4	44.7	43.3	62.8	62.8	49.6	
			\checkmark	51.0	37.7	50.5	91.0	79.8	62.0	
		$s_{m P P L}$	\checkmark	56.7	50.9	49.5	95.2	81.2	66.7	
	RoBERTa	$s_{P P L}$		42.4	49.1	49.1	90.8	69.7	60.2	
			\checkmark	53.7	57.0	55.8	93.6	80.5	68.1	
		$s_{\text {PMI }}$		35.9	42.5	44.0	60.8	60.8	48.8	
			\checkmark	51.3	49.1	38.7	92.4	77.2	61.7	
		$s_{m P P L}$	\checkmark	53.4	58.3	57.4	93.6	78.4	68.2	
$\frac{11}{3}$		L			43.0	40.7	96.6	72.0	60.0	
	GloVe	-		47.8	46.5	39.8	96.0	68.7	59.8	
	Word2vec	-		41.8	40.4	39.6	93.2	63.8	55.8	
$\begin{aligned} & \ddot{\ddot{\omega}} \\ & \tilde{\omega} \end{aligned}$	PMI	-		23.3	32.9	39.1	57.4	42.7	39.1	
	Random	-		20.0	23.6	24.2	25.0	25.0	23.6	

Results

	Model	Score	Tuned	SAT	U2	U4	Google BATS		Avg	
BERT		$s_{P P L}$		32.9	32.9	34.0	80.8	61.5	48.4	
		\checkmark	39.8	41.7	41.0	86.8	67.9	55.4		
		$s_{P M I}$		27.0	32.0	31.2	74.0	59.1	44.7	
		\checkmark	40.4	42.5	27.8	87.0	68.1	53.2		
		$s_{m P P L}$	\checkmark	41.8	44.7	41.2	88.8	67.9	56.9	
\sum	GPT-2		$s_{P P L}$		35.9	41.2	44.9	80.4	63.5	53.2
		\checkmark		50.4	48.7	51.2	93.2	75.9	63.9	
		$s_{\text {PMI }}$		34.4	44.7	43.3	62.8	62.8	49.6	
			\checkmark	51.0	37.7	50.5	91.0	79.8	62.0	
		$s_{m P P L}$	\checkmark	56.7	50.9	49.5	95.2	81.2	66.7	
	RoBERTa	$s_{P P L}$		42.4	49.1	49.1	90.8	69.7	60.2	
			\checkmark	53.7	57.0	55.8	93.6	80.5	68.1	
		$s_{\text {PMI }}$		35.9	42.5	44.0	60.8	60.8	48.8	
			\checkmark	51.3	49.1	38.7	92.4	77.2	61.7	
		$s_{m P P L}$	\checkmark	53.4	58.3	57.4	93.6	78.4	68.2	
$\frac{1}{3}$	FastText	-		47.8	43.0	40.7	96.6	72.0	60.0	
	GloVe	-		47.8	46.5	39.8	96.0	68.7	59.8	
	Word2vec	-		41.8	40.4	39.6	93.2	63.8	55.8	
$\begin{aligned} & \hline \ddot{\sim} \\ & \stackrel{\sim}{\sim} \end{aligned}$	PMI	-		23.3	32.9	39.1	57.4	42.7	39.1	
	Random	-		20.0	23.6	24.2	25.0	25.0	23.6	

Results

	Model	Score	Tuned	SAT	U2	U4	Google	BATS	Avg
\sum	BERT	$s_{P P L}$		32.9	32.9	34.0	80.8	61.5	48.4
			\checkmark	39.8	41.7	41.0	86.8	67.9	55.4
		$s_{P M I}$		27.0	32.0	31.2	74.0	59.1	44.7
			\checkmark	40.4	42.5	27.8	87.0	68.1	53.2
		$s_{m P P L}$	\checkmark	41.8	44.7	41.2	88.8	67.9	56.9
	GPT-2	$s_{P P L}$		35.9	41.2	44.9	80.4	63.5	53.2
			\checkmark	50.4	48.7	51.2	93.2	75.9	63.9
		$s_{\text {PMI }}$		34.4	44.7	43.3	62.8	62.8	49.6
			\checkmark	51.0	37.7	50.5	91.0	79.8	62.0
		$s_{m P P L}$	\checkmark	56.7	50.9	49.5	95.2	81.2	66.7
	RoBERTa	$s_{P P L}$		42.4	49.1	49.1	90.8	69.7	60.2
			\checkmark	53.7	57.0	55.8	93.6	80.5	68.1
		$s_{\text {PMI }}$		35.9	42.5	44.0	60.8	60.8	48.8
			\checkmark	51.3	49.1	38.7	92.4	77.2	61.7
		$s_{m P P L}$	\checkmark	53.4	58.3	57.4	93.6	78.4	68.2
\sum_{3}^{N}	FastText	-		47.8	43.0	40.7	96.6	72.0	60.0
	GloVe	-		47.8	46.5	39.8	96.0	68.7	59.8
	Word2vec	-		41.8	40.4	39.6	93.2	63.8	55.8
$\begin{aligned} & \dot{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	PMI	-		23.3	32.9	39.1	57.4	42.7	39.1
	Random	-		20.0	23.6	24.2	25.0	25.0	23.6

Results

	Model	Score	Tuned	Accuracy
LM	BERT	$s_{P P L}$		32.6
			\checkmark	40.4*
		$s_{\text {PMI }}$		26.8
			\checkmark	41.2*
		$s_{m P P L}$	\checkmark	42.8*
	GPT-2	$s_{P P L}$		41.4
			\checkmark	56.2*
		$s_{\text {PMI }}$		34.7
			\checkmark	56.8*
		$s_{m P P L}$	\checkmark	57.8*
	RoBERTa	$s_{P P L}$		49.6
			\checkmark	55.8*
		$s_{P M I}$		42.5
			\checkmark	54.0*
		$s_{m P P L}$	\checkmark	55.8*
	GPT-3	Zero-shot		53.7
		Few-shot	\checkmark	65.2*
-	LRA	-		56.4
WE	FastText	-		49.7
	GloVe	-		48.9
	Word2vec	-		42.8
Base	PMI	-		23.3
	Random	-		20.0

Easier for humans = easier for LMs?

high-beginning low-intermediate
high-intermediate low-advanced
high-advanced

Are the results robust under permutations?

Are the results robust under permutations?

Distilling Relation Embeddings from Pre-trained Language Models

Asahi Ushio and Jose Camacho-Collados and Steven Schockaert
Cardiff NLP, School of Computer Science and Informatics
Cardiff University, United Kingdom
\{UshioA, CamachoColladosJ, SchockaertS1\}@cardiff.ac.uk

Learning relation vectors

relation vector

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H. Miller: Language Models as Knowledge Bases? EMNLP/IJCNLP (1) 2019: 2463-2473

Fine-tune BERT on SemEval-2012 Task 2 data

Subcategory	Relation name	Relation schema	Paradigms	Responses
8(e)	AGENT:GOAL	" Y is the goal of $X "$	pilgrim:shrine assassin:death climber:peak	patient:health runner:finish astronaut:space
5(e)	OBJECT:TYPICAL ACTION	"an X will typically $Y "$	glass:break soldier:fight	ice:melt lion:roar
			juggernaut:crush	knife:stab

Fine-tune BERT on SemEval-2012 Task 2 data

66.0 "fire:hot"
59.6 "villain:evil"
53.8 "water:wet"
43.1 "tycoon:wealthy"
42.3 "snow:cold"
35.3 "candy:sweet"
32.0 "professor:intellectual"
30.0 "steel:strong"
30.0 "novice:inexperience"
-45.1 "prince:charming"
-46.0 "heat:fire"
-52.0 "lipstick:red"
-56.9 "fizzy:pop"
-60.0 "man:tall"
-72.5 "flimsy:paper"
-72.5 "tall:man"
-76.5 "intellectual:professor"

56.0 "loss:grief"
48.0 "injury:pain"
44.0 "disease:sickness"
42.0 "explosion:damage"
41.2 "accident:damage"
34.5 "germs:sickness"
30.0 "bath:cleanliness"
26.0 "exercise:fitness"
22.0 "tragedy:tears"
-22.0 "digging:hole"
-24.0 "sow:germinate"
-28.0 "yelling:anger"
-42.0 "headache:stress"
-48.0 "learning:study"
-62.0 "response:stimulus"
-66.0 "boredom:repetition"
-74.0 "sweat:run"

Fine-tune BERT on SemEval-2012 Task 2 data

should be similar

66.0 "fire:hot"
59.6 "villain:evil"
53.8 "water:wet"
43.1 "tycoon:wealthy"
42.3 "snow:cold"
35.3 "candy:sweet"
32.0 "professor:intellectual"
30.0 "steel:strong"
30.0 "novice:inexperience"
-45.1 "prince:charming"
-46.0 "heat:fire"
-52.0 "lipstick:red"
-56.9 "fizzy:pop"
-60.0 "man:tall"
-72.5 "flimsy:paper"
-72.5 "tall:man"
-76.5 "intellectual:professor"

56.0 "loss:grief"
48.0 "injury:pain"
44.0 "disease:sickness"
42.0 "explosion:damage"
41.2 "accident:damage"
34.5 "germs:sickness"
30.0 "bath:cleanliness"
26.0 "exercise:fitness"
22.0 "tragedy:tears"
-22.0 "digging:hole"
-24.0 "sow:germinate"
-28.0 "yelling:anger"
-42.0 "headache:stress"
-48.0 "learning:study"
-62.0 "response:stimulus"
-66.0 "boredom:repetition"
-74.0 "sweat:run"

Fine-tune BERT on SemEval-2012 Task 2 data

should be dissimilar
66.0 "fire:hot"
59.6 "villain:evil"
53.8 "water:wet"
43.1 "tycoon:wealthy"
42.3 "snow:cold"
35.3 "candy:sweet"
32.0 "professor:intellectual"
30.0 "steel:strong"
30.0 "novice:inexperience"
...
-45.1 "prince:charming"
-46.0 "heat:fire"
-52.0 "lipstick:red"
-56.9 "fizzy:pop"
-60.0 "man:tall"
-72.5 "flimsy:paper"
-72.5 "tall:man"
-76.5 "intellectual:professor"
56.0 "loss:grief"
48.0 "injury:pain"
44.0 "disease:sickness"
42.0 "explosion:damage"
41.2 "accident:damage"
34.5 "germs:sickness"
30.0 "bath:cleanliness"
26.0 "exercise:fitness"
22.0 "tragedy:tears"
-22.0 "digging:hole"
-24.0 "sow:germinate"
-28.0 "yelling:anger"
-42.0 "headache:stress"
-48.0 "learning:study"
-62.0 "response:stimulus"
-66.0 "boredom:repetition"
-74.0 "sweat:run"

Fine-tune BERT on SemEval-2012 Task 2 data

should be dissimilar

66.0 "fire:hot"
59.6 "villain:evil"
53.8 "water:wet"
43.1 "tycoon:wealthy"
42.3 "snow:cold"
35.3 "candy:sweet"
32.0 "professor:intellectual"
30.0 "steel:strong"
30.0 "novice:inexperience"
-45.1 "prince:charming"
-46.0 "heat:fire"
-52.0 "lipstick:red"
-56.9 "fizzy:pop"
-60.0 "man:tall"
-72.5 "flimsy:paper"
-72.5 "tall:man"
-76.5 "intellectual:professor"
56.0 "loss:grief"
48.0 "injury:pain"
44.0 "disease:sickness"
42.0 "explosion:damage"
41.2 "accident:damage"
34.5 "germs:sickness"
30.0 "bath:cleanliness"
26.0 "exercise:fitness"
22.0 "tragedy:tears"
-22.0 "digging:hole"
-24.0 "sow:germinate"
-28.0 "yelling:anger"
-42.0 "headache:stress"
-48.0 "learning:study"
-62.0 "response:stimulus"
-66.0 "boredom:repetition"
-74.0 "sweat:run"

Training loss

Triplet loss

$$
L_{t}=\max \left(0,\left\|\boldsymbol{x}_{a}-\boldsymbol{x}_{p}\right\|-\left\|\boldsymbol{x}_{a}-\boldsymbol{x}_{n}\right\|+\varepsilon\right)
$$

relation vector for some word pair a

 relation vector for a word pair p , similar to a relation vector for a word pair n, not similar to aDavid Jurgens, Saif Mohammad, Peter D. Turney, Keith J. Holyoak: SemEval-2012 Task 2: Measuring Degrees of Relational Similarity. SemEval@NAACL-HLT 2012: 356-364

Training loss

Triplet loss

$$
L_{t}=\max \left(0,\left\|\boldsymbol{x}_{a}-\boldsymbol{x}_{p}\right\|-\left\|\boldsymbol{x}_{a}-\boldsymbol{x}_{n}\right\|+\varepsilon\right)
$$

Classification loss

$$
\begin{aligned}
L_{c} & =-\log \left(g\left(\boldsymbol{x}_{a}, \boldsymbol{x}_{p}\right)\right)-\log \left(1-g\left(\boldsymbol{x}_{a}, \boldsymbol{x}_{n}\right)\right) \\
g(\boldsymbol{u}, \boldsymbol{v}) & =\operatorname{sigmoid}\left(W \cdot[\boldsymbol{u} \oplus \boldsymbol{v} \oplus|\boldsymbol{v}-\boldsymbol{u}|]^{T}\right)
\end{aligned}
$$

David Jurgens, Saif Mohammad, Peter D. Turney, Keith J. Holyoak: SemEval-2012 Task 2: Measuring Degrees of Relational Similarity. SemEval@NAACL-HLT 2012: 356-364

Results

Model	SAT \dagger	SAT	U2	U4	Google BATS	
Random	20.0	20.0	23.6	24.2	25.0	25.0
PMI	23.3	23.1	32.9	39.1	57.4	42.7
LRA	56.4	-	-	-	-	-
SuperSim	54.8	-	-	-	-	-
GPT-3 (zero)	53.7	-	-	-	-	-
GPT-3 (few)	65.2*	-	-	-	-	-
RELATIVE	24.9	24.6	32.5	27.1	62.0	39.0
pair2vec	33.7	34.1	25.4	28.2	66.6	53.8
GloVe	48.9	47.8	46.5	39.8	96.0	68.7
FastText	49.7	47.8	43.0	40.7	96.6	72.0
Analogical Proportion Score						
- GPT-2	41.4	35.9	41.2	44.9	80.4	63.5
- BERT	32.6	32.9	32.9	34.0	80.8	61.5
- RoBERTa	49.6	42.4	49.1	49.1	90.8	69.7
Analogical Proportion Score (tuned)						
- GPT-2	57.8*	56.7*	50.9*	49.5*	95.2*	81.2*
- BERT	42.8*	41.8*	44.7*	41.2*	88.8*	67.9*
- RoBERTa	55.8*	53.4*	58.3*	57.4*	93.6*	78.4*
RelBERT						
- Manual	69.5	70.6	66.2	65.3	92.4	78.8
- AutoPrompt	61.0	62.3	61.4	63.0	88.2	74.6
- P-tuning	54.0	55.5	58.3	55.8	83.4	72.1

Results

	Model	BLESS		CogALexV		EVALution		$\mathbf{K} \boldsymbol{\&} \mathbf{H}+\mathbf{N}$		ROOT09	
		macro	micro								
GloVe	cat	92.9	93.3	42.8	73.5	56.9	58.3	88.8	94.9	86.3	86.5
	cat + dot	93.1	93.7	51.9	79.2	55.9	57.3	89.6	95.1	88.8	89.0
	cat + dot + pair	91.8	92.6	56.4	81.1	58.1	59.6	89.4	95.7	89.2	89.4
	cat + dot+rel	91.1	92.0	53.2	79.2	58.4	58.6	89.3	94.9	89.3	89.4
	diff	91.0	91.5	39.2	70.8	55.6	56.9	87.0	94.4	85.9	86.3
	diff + dot	92.3	92.9	50.6	78.5	56.5	57.9	88.3	94.8	88.6	88.9
	diff+dot+pair	91.3	92.2	55.5	80.2	56.0	57.4	88.0	95.5	89.1	89.4
	diff + dot + rel	91.1	91.8	52.8	78.6	56.9	57.9	87.4	94.6	87.7	88.1
FastText	cat	92.4	92.9	40.7	72.4	56.4	57.9	88.1	93.8	85.7	85.5
	cat + dot	92.7	93.2	48.5	77.4	56.7	57.8	89.1	94.0	88.2	88.5
	cat + dot+pair	90.9	91.5	53.0	79.3	56.1	58.2	88.3	94.3	87.7	87.8
	cat + dot + rel	91.4	91.9	50.6	76.8	57.9	59.1	86.9	93.5	87.1	87.4
	diff	90.7	91.2	39.7	70.2	53.2	55.5	85.8	93.3	85.5	86.0
	diff + dot	92.3	92.9	49.1	77.8	55.2	57.4	86.5	93.6	88.5	88.9
	diff+dot+pair	90.0	90.8	53.9	79.0	55.8	57.8	86.6	94.2	87.7	88.1
	diff + dot + rel	90.6	91.3	53.6	78.2	57.1	58.0	86.3	93.4	86.9	87.4
RelBERT	Manual	91.7	92.1	71.2	87.0	68.4	69.6	88.0	96.2	90.9	91.0
	AutoPrompt	91.9	92.4	68.5	85.1	69.5	70.5	91.3	97.1	90.0	90.3
	P-tuning	91.3	91.8	67.8	84.9	69.1	70.2	88.5	96.3	89.8	89.9
SotA	LexNET	-	89.3	-	-	-	60.0	-	98.5	-	81.3
	SphereRE	-	93.8	-	-	-	62.0	-	99.0	-	86.1

Results

	BLESS	CogALex	EVAL	K\&H+N	ROOT09
rand	$93.7(+0.3)$	$94.3(-0.2)$	-	$97.9(+0.2)$	$91.2(-0.1)$
mero	$89.8(+1.4)$	$72.9(+2.7)$	$69.2(+1.9)$	$74.5(+5.4)$	-
event	$86.5(-0.3)$	-	-	-	-
hyp	$94.1(+0.8)$	$60.9(-0.7)$	$61.7(-1.5)$	$93.5(+5.0)$	$83.0(-0.4)$
cohyp	$96.4(+0.3)$	-	-	$97.8(+1.2)$	$97.4(-0.5)$
attr	$92.6(+0.3)$	-	$84.7(+1.6)$	-	-
poss	-	-	$67.1(-0.2)$	-	-
ant	-	$76.8(-2.6)$	$81.3(-0.9)$	-	-
syn	-	$49.9(-0.6)$	$53.6(+2.7)$	-	-
macro	$92.2(+0.5)$	$71.0(-0.2)$	$69.3(+0.9)$	$90.9(+2.9)$	$90.5(-0.4)$
micro	$92.5(+0.4)$	$86.9(-0.1)$	$70.2(+0.6)$	$97.2(+1.0)$	$90.7(-0.3)$

Examples

Category	Target	Nearest Neighbors RelBERT
Commonsense	barista:coffee restaurant:waitress car:garage ice:melt dolphin:swim flower:fragrant coconut:milk bag:plastic duck:duckling	baker:bread, brewer:beer, bartender:cocktail, winemaker:wine, bartender:drink, baker:cake restaurant:waiter, diner:waitress, bar:bartender, hospital:nurse, courthouse:clerk, office:clerk car:pit, plane:hangar, auto:garage, baby:crib, yacht:harbour, aircraft:hangar snow:melt, glacier:melt, ice:drift, crust:melt, polar ice:melt, ice:thaw squid:swim, salmon:swim, shark:swim, fish:swim, horse:run, frog:leap orchid:fragrant, cluster:fragrant, jewel:precious, jewel:valuable, soil:permeable, vegetation:abundant coconut:oil, goat:milk, grape:juice, palm:oil, olive:oil, camel:milk bottle:plastic, bag:leather, container:plastic, box:plastic, jug:glass, bottle:glass chicken:chick, pig:piglet, cat:kitten, ox:calf, butterfly:larvae, bear:cub
Gender	man:woman	men:women, male:female, father:mother, boy:girl, hero:heroine, king:queen
Antonymy	cooked:raw normal:abnormal	raw:cooked, regulated:unregulated, sober:drunk, loaded:unloaded, armed:unarmed, published:unpublished ordinary:unusual, usual:unusual, acceptable:unacceptable, stable:unstable, rational:irrational, legal:illegal
Meronymy	helicopter:rotor bat:wing beer:alcohol oxygen:atmosphere	helicopter:rotor blades, helicopter:wing, bicycle:wheel, motorcycle:wheel, airplane:engine, plane:engine butterfly:wing, eagle:wing, angel:wing, cat:paw, lion:wings, fly:wing wine:alcohol, cider:alcohol, soda:sugar, beer:liquor, beer:malt, lager:alcoho helium:atmosphere, hydrogen:atmosphere, nitrogen:atmosphere, methane:atmosphere, carbon:atmosphere
Hypernymy	chihuahua:dog pelican:bird tennis:sport	dachshund:dog, poodle:dog, terrier:dog, chinchilla:rodent, macaque:monkey, dalmatian:dog toucan:bird, puffin:bird, egret:bird, peacock:bird, grouse:bird, pigeon:bird hockey:sport, soccer:sport, volleyball:sport, cricket:sport, golf:sport, football:sport
Morphology	dog:dogs tall:tallest spy:espionage	cat:cats, horse:horses, pig:pigs, rat:rats, wolf:wolves, monkey:monkeys strong:strongest, short:shortest, smart:smartest, weak:weakest, big:biggest, small:smallest pirate:piracy, robber:robbery, lobbyist:lobbying, scout:scouting, terrorist:terrorism, witch:witchcraft

Examples

Category	Target	Nearest Neighbors RelBERT
	barista:coffee	baker:bread, brewer:beer, bartender:cocktail, winemaker:wine, bartender:drink, baker:cake
	restaurant:waitress	restaurant:waiter, diner:waitress, bar:bartender, hospital:nurse, courthouse:clerk, office:clerk
	car:garage ice:melt	car:pit, plane:hangar, auto:garage, baby:crib, yacht:harbour, aircraft:hangar snow:melt, glacier:melt, ice:drift, crust:melt, polar ice:melt, ice:thaw
Commonsense	dolphin:swim	squid:swim, salmon:swim, shark:swim, fish:swim, horse:run, frog:leap
	flower:fragrant coconut:milk	orchid:fragrant, cluster:fragrant, jewel:precious, jewel:valuable, soil:permeable, vegetation:abundant coconut:oil, goat:milk, grape:juice, palm:oil, olive:oil, camel:milk
	bag:plastic duck:ducklin	bottle:plastic, bag:leather, container:plastic, box:plastic, jug:glass, bottle:glass
Gender	man:woman	men:women, male:female, father:mother, boy:girl, hero:heroine, king:queen
Antonymy	cooked:raw normal:abnormal	raw:cooked, regulated:unregulated, sober:drunk, loaded:unloaded, armed:unarmed, published:unpublished ordinary:unusual, usual:unusual, acceptable:unacceptable, stable:unstable, rational:irrational, legal:illegal
Meronymy	helicopter:rotor bat:wing beer:alcohol oxygen:atmosphere	helicopter:rotor blades, helicopter:wing, bicycle:wheel, motorcycle:wheel, airplane:engine, plane:engine butterfly:wing, eagle:wing, angel:wing, cat:paw, lion:wings, fly:wing wine:alcohol, cider:alcohol, soda:sugar, beer:liquor, beer:malt, lager:alcoho helium:atmosphere, hydrogen:atmosphere, nitrogen:atmosphere, methane:atmosphere, carbon:atmosphere
Hypernymy	chihuahua:dog pelican:bird tennis:sport	dachshund:dog, poodle:dog, terrier:dog, chinchilla:rodent, macaque:monkey, dalmatian:dog toucan:bird, puffin:bird, egret:bird, peacock:bird, grouse:bird, pigeon:bird hockey:sport, soccer:sport, volleyball:sport, cricket:sport, golf:sport, football:sport
Morphology	dog:dogs tall:tallest spy:espionage	cat:cats, horse:horses, pig:pigs, rat:rats, wolf:wolves, monkey:monkeys strong:strongest, short:shortest, smart:smartest, weak:weakest, big:biggest, small:smallest pirate:piracy, robber:robbery, lobbyist:lobbying, scout:scouting, terrorist:terrorism, witch:witchcraft

Examples

Category	Target	Nearest Neighbors ReIBERT
Commonsense	barista:coffee restaurant:waitress car:garage ice:melt dolphin:swim flower:fragrant coconut:milk bag:plastic duck:duckling	baker:bread, brewer:beer, bartender:cocktail, winemaker:wine, bartender:drink, baker:cake restaurant:waiter, diner:waitress, bar:bartender, hospital:nurse, courthouse:clerk, office:clerk car:pit, plane:hangar, auto:garage, baby:crib, yacht:harbour, aircraft:hangar snow:melt, glacier:melt, ice:drift, crust:melt, polar ice:melt, ice:thaw squid:swim, salmon:swim, shark:swim, fish:swim, horse:run, frog:leap orchid:fragrant, cluster:fragrant, jewel:precious, jewel:valuable, soil:permeable, vegetation:abundant coconut:oil, goat:milk, grape:juice, palm:oil, olive:oil, camel:milk bottle:plastic, bag:leather, container:plastic, box:plastic, jug:glass, bottle:glass chicken:chick, pig:piglet, cat:kitten, ox:calf, butterfly:larvae, bear:cub
Gender	man:woman	men:women, male:female, father:mother, boy:girl, hero:heroine, king:queen
Antonymy	cooked:raw normal:abnorma	raw:cooked, regulated:unregulated, sober:drunk, loaded:unloaded, armed:unarmed, published:unpublished ordinary:unusual, usual:unusual, acceptable:unacceptable, stable:unstable, rational:irrational, legal:illegal
Meronymy	helicopter:rotor bat:wing beer:alcohol oxygen:atmosphere	helicopter:rotor blades, helicopter:wing, bicycle:wheel, motorcycle:wheel, airplane:engine, plane:engine butterfly:wing, eagle:wing, angel:wing, cat:paw, lion:wings, fly:wing wine:alcohol, cider:alcohol, soda:sugar, beer:liquor, beer:malt, lager:alcoho helium:atmosphere, hydrogen:atmosphere, nitrogen:atmosphere, methane:atmosphere, carbon:atmosphere
Hypernymy	chihuahua:dog pelican:bird tennis:sport	dachshund:dog, poodle:dog, terrier:dog, chinchilla:rodent, macaque:monkey, dalmatian:dog toucan:bird, puffin:bird, egret:bird, peacock:bird, grouse:bird, pigeon:bird hockey:sport, soccer:sport, volleyball:sport, cricket:sport, golf:sport, football:sport
Morphology	dog:dogs tall:tallest spy:espionage	cat:cats, horse:horses, pig:pigs, rat:rats, wolf:wolves, monkey:monkeys strong:strongest, short:shortest, smart:smartest, weak:weakest, big:biggest, small:smallest pirate:piracy, robber:robbery, lobbyist:lobbying, scout:scouting, terrorist:terrorism, witch:witchcraft

Examples

Category	Target	Nearest Neighbors RelBERT
Commonsense	barista:coffee restaurant:waitress car:garage ice:melt dolphin:swim flower:fragrant coconut:milk bag:plastic duck:duckling	baker:bread, brewer:beer, bartender:cocktail, winemaker:wine, bartender:drink, baker:cake restaurant:waiter, diner:waitress, bar:bartender, hospital:nurse, courthouse:clerk, office:clerk car:pit, plane:hangar, auto:garage, baby:crib, yacht:harbour, aircraft:hangar snow:melt, glacier:melt, ice:drift, crust:melt, polar ice:melt, ice:thaw squid:swim, salmon:swim, shark:swim, fish:swim, horse:run, frog:leap orchid:fragrant, cluster:fragrant, jewel:precious, jewel:valuable, soil:permeable, vegetation:abundant coconut:oil, goat:milk, grape:juice, palm:oil, olive:oil, camel:milk bottle:plastic, bag:leather, container:plastic, box:plastic, jug:glass, bottle:glass chicken:chick, pig:piglet, cat:kitten, ox:calf, butterfly:larvae, bear:cub
Gender	man:woman	men:women, male:female, father:mother, boy:girl, hero:heroine, king:queen
Antonymy	cooked:raw normal:abnormal	raw:cooked, regulated:unregulated, sober:drunk, loaded:unloaded, armed:unarmed, published:unpublished ordinary:unusual, usual:unusual, acceptable:unacceptable, stable:unstable, rational:irrational, legal:illegal
Meronymy	helicopter:rotor bat:wing beer:alcohol oxygen:atmosphere	helicopter:rotor blades, helicopter:wing, bicycle:wheel, motorcycle:wheel, airplane:engine, plane:engine butterfly:wing, eagle:wing, angel:wing, cat:paw, lion:wings, fly:wing wine:alcohol, cider:alcohol, soda:sugar, beer:liquor, beer:malt, lager:alcoho helium:atmosphere, hydrogen:atmosphere, nitrogen:atmosphere, methane:atmosphere, carbon:atmosphere
Hypernymy	chihuahua:dog pelican:bird tennis:sport	dachshund:dog, poodle:dog, terrier:dog, chinchilla:rodent, macaque:monkey, dalmatian:dog toucan:bird, puffin:bird, egret:bird, peacock:bird, grouse:bird, pigeon:bird hockey:sport, soccer:sport, volleyball:sport, cricket:sport, golf:sport, football:sport
Morphology	dog:dogs tall:tallest	cat:cats, horse:horses, pig:pigs, rat:rats, wolf:wolves, monkey:monkeys strong:strongest, short:shortest, smart:smartest, weak:weakest, big:biggest, small:smallest pirate:piracy, robber:robbery, lobbyist:lobbying, scout:scouting, terrorist:terrorism, witch:witchcraft
	spy:espionage	

