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Why conformal prediction?

l Generic classifier trying to predict Y from observing X does not
provide strong statistical guarantee

l Such guarantee can be seen as requiring predictions Ŷ to contain
the observed truth y with a given (coverage) probability, i.e., 1− ε

P(y ∈ Ŷ ) > 1− ε

with ε a specified error rate.
l Conformal prediction allows one to have it with weak assumptions
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Transuctive vs inductive conformal prediction

CP started as a transductive, online learning setting:

l Observe the (exchangeable1) sequence

(x1, y1), (x2, y2), . . . , (xn, yn)

l Observe xn+1, predict the possible yn+1.

Then was proposed in an inductive setting, where

l you keep some calibration data Dcal

l you learn a model h : X → Y from a (disjoint) training set Dtr

l you predict new observations using those.

1Future inferences do not depend on the order of observation
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(Very) basic ideas of inductive conformal prediction

l Calibrating observations (xi , yi) ∈ Dcal issued from distribution Q

l For each (xi , yi), we associate a conformity score αi depending on
(xi , yi) and h(xi) (e.g., model score given to yi )

l The lower αi , the better.

l Assume we have 4 calibrating observations with α1 < . . . < α4

α1 α2 α3 α4

p = 0.2 p = 0.2 p = 0.2 p = 0.2 p = 0.2

l The probability of a next item score falling into a bin is 1/|Dcal |
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Predicting a new item: classification

l We observe x . Completing it with possible class y gives αy

l Given
α1 α2 α3 α4

p = 0.2 p = 0.2 p = 0.2 p = 0.2 p = 0.2

αy1 αy2

We have P(αy ≤ α4) = 0.8.

l Retaining all classes y ∈ Y with αy ≤ αi as Ŷ will ensure

P(y ∈ Ŷ ) = i/(n + 1)
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Predicting a new item: regression

l We observe x , but Y is now a continuous variable
l Conformity score based on h=distance, for example

αi = |yi − h(xi)|

l Given
α1 = 2.3 α2 = 4 α3 = 6.9 α4 = 9

p = 0.2 p = 0.2 p = 0.2 p = 0.2 p = 0.2

We sill have P(αy ≤ α4) = 0.8.
l Meaning that P(|y − h(xi)| ≤ αj) = j/(n + 1). Take all values within

[h(xi)− αj , h(xi) + αj ]
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Predicting a new item: regression continued

l if αi = |yi − h(xi)| then predicted interval

[h(xi)− αj , h(xi) + αj ]

is of constant length

l solution: use of normalised conformal scores

αi =
|yi − h(xi)|

σi

where σi is an estimation of the local error

l In this case, intervals

[h(xi)− αjσi , h(xi) + αjσi ]

depend on the local behaviour
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Multi-variate regression and conformal prediction

l The input X is unchanged

l We now observe multi-variate outputs y ∈ Rm

how can we adapt conformal approaches to have multivariate prediction
regions with guaranteed error rates?
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A first idea

l Fixing marginal error rates εj for each dimension j , and apply
previous recipes dimension-wise

l How to relate it to the global error?

y1

y2

A1

A2

P(y1 ∈ A1) = 1− ε1P
(y

2
∈

A
2
)
=

1
−

ε
2

l We only have

max(ε1 + ε2− 1, 0) ≤ 1− εg = P(y ∈ A1 ∩A2) ≤ min(1− ε1, 1− ε2)
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Copulas to the help

l Finding the relation between εg and εi

l Taking the product

P(y ∈ A1 ∩ A2) = P(y1 ∈ A1)P(y2 ∈ A2)

↔ Bonferroni multi-test correction
→ leads to poorly calibrated results

l One idea: as P(|yk − hk (xi)| ≤ αj) can be seen as a cumulative
distribution F k → use tools combining such cumulative distributions
→

Copula
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Just a little bit of details

l Given uniform r.v. Uk

l A function C : [0, 1]m → [0, 1]

l A copula C describes their joint distribution

C(u1, u2, . . . , ud ) = P(U1 ≤ u1,U2 ≤ u2, . . . ,Ud ≤ ud )

l See C(u1, u2, . . . , ud ) as giving εg in function of ε1, . . . , εm

l Learn it from calibrating data.
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In practice

l In general, we assume ε1 = . . . = εm

l Find the value ε such that

εg = C(ε, . . . , ε︸ ︷︷ ︸
m times

)

y1

y2

A1

A2

P(y1 ∈ A1) = 1− ε

P
(y

2
∈

A
2
)
=

1
−

ε
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A second idea

Copula idea work well in practice, yet

l The framework is essentially a combination of univariate inferences
(→ not "truly" multivariate)

l It does not capture potential dependencies depending on a
covariate structure (hyper-cubes are axis-aligned)

→ directly use a multi-variate conformal score
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Proposed score

l We propose the following score given (xi , yi):

αi ∝ (yi − h(x i)Σi(yi − h(x i)

where Σi is a local covariance matrix.

l We essentially find a local ellipsoid region with guaranteed coverage

l Up to now, we estimate it by taking a regularized matrix estimated
from neighbours
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An illustration of the results
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Some concluding remarks

l Easy framework to derive robust predictions

l Can differentiate to some extent ambiguity vs lack of information

But still a lot to do

l Ensure conditional coverage P(y ∈ Ŷ |x) > 1− ε
l deal with non-i.i.d./exchangeable cases (transfer learning, time

series, . . . )
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